
I H
i CO I

h 'I'H

ESD
SCIEKTiflC & H£ •

ESD ACCESSION
£SW Call Na. t JU .,

Copy No. /

Technical Note 1967-12

VITAL
Compiler-Compiler System

Reference Manual

L. F. Mondshein

8 February 1967

Lincoln Laboratory
IE OF 1 OGY

The work reported in this document was performed at Lincoln Labor;*
lter for research operated by Massachusetts Institute of Techno

this work was supported by the U.S. Advanced Research Projects Agem
the Departmentof Defense under Air Force Contract AF 19(628>5167 (ARPA
Order 691).

This reproduced to satisfy needs of U.S.Government agen<

unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

VITAL COMPILER-COMPILER SYSTEM REFERENCE MANUAL

L. F. MONDSHEIN

Group 23

TECHNICAL NOTE 1967-12

8 FEBRUARY 1967

LEXINGTON MASSACHUSETTS

ABSTRACT

This manual describes the general operation of the VITAL compiler-

compiler system and the details of Production Language (PL) and Formal

Semantic Language (FSL).

The Appendices contain information on the system's meta-commands,

a guide to the use of PL, an example of an ALGOL compiler, and a table of

symbols used in PL and FSL.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

111

PREFACE

This document is intended primarily as a reference manual for

users of the VITAL system as it is presently implemented on the Lincoln

Laboratory TX-2 Computer. It is not an introductory text. However,

hopefully it will be helpful to other readers who wish to acquaint

themselves with the operation of the system. Such readers are advised

to study Chapter 1 and Appendix B, read Chapters 2 and 3 in a cursory

manner, and then proceed to a careful study of Appendix C.

The author wishes to thank Dr. Jerome A. Feldman and James E. Curry

for the tutelage they gave in the preparation of this material.

IV

TABLE OF CONTENTS

Abstract iii

Preface iv

CHAPTER 1 - THE VITAL SYSTEM 1

1. General Description 1

2. Operation of Compiler 3

CHAPTER 2 - PRODUCTION LANGUAGE 5

i . Program Structure 5

2. Declarations 5

3. Productions 8

4. Remarks 9

CHAPTER 3 - FORMAL SEMANTIC LANGUAGE 13

1. Primaries and Boolean Primaries 13

2. Arithmetic and Boolean Expressions 22

3. Unconditional and Conditional Statements 22

4. Declarations 2 8

5. General Features 30

APPENDIX A-Control Meta-Commands* 33

APPENDIX B - Production Language Guide 49

APPENDIX C -Algol: Semantics and Productions 57

APPENDIX D - Symbols 73

* By James E. Curry, C.W. Adams Associates, Inc.

v

1

CHAPTER I
THE VITAL SYSTEM

GENERAL DESCRIPTION

Purpose

The purpose of the VITAL system is to mechanize the details of

compiler-writing for a wide class of potential compilers. The term VITAL

denotes Variably Initialized Translator of Algorithmic Languages.

Figure 1, explained below, presents a functional view of the system,

DESCRIPTION

OF

COMPILER SYNTAX

DESCRIPTION

OF

COMPILER SEMANTICS

3-23 -T2T91

COMPILER-COMPILER

COMPILER

V
TRANSLATED

OUTPUT

FIGURE 1

1

Compiler Structure

A compiler produced by VITAL consists of two units: a

recognizer and a translator. The recognizer identifies syntactic features

of the source text; the translator creates output code.

Each of these units is partitioned into a language-dependent

and a language-independent section; the language-independent

section is the same for all compilers.

Recognizer

The recognizing or parsing of input text is implemented by

the production interpreter, which is driven by a table of productions

The production interpreter is language-independent; the productions

are language-dependent.

The compiler writer describes the productions in a high-level

language called Production Language, or PL (See Chapter 2).

Translator

The translation of input is produced by a set of semantic

routines. These routines contain calls to a collection of code generator

subroutines. The code generators are language-independent; the

semantics are language-dependent.

The semantics are specified by the compiler writer in a high-

level language known as Formal Semantic Language, or FSL (See

Chapter 3).

Compiler-Compiler Construction

Both the PL and FSL processors have the same structure as the

compiler illustrated in Figure 1. They were created by a hand-coding

and bootstrapping operation.

First, the language-independent code generators and pro-

duction interpreter were hand-coded. Then the PL processor was

constructed by hand-coding its semantics and productions . The

FSL processor was produced by hand-coding its semantics and

writing its productions in PL.

It might be noted that the language-independent sections

are identical in the PL processor, FSL processor, and all VITAL -

produced compilers, with the single exception of the PL code

generators. These last are a small subset of the standard collection

of code generators, due to the relatively simple nature of the PL

output.

2. OPERATION OF COMPILER

Productions , Semantics , Main Stack

The main stack is part of system storage. Its function is

both syntactic and semantic. When the history of the stack is

displayed as a tree (Appendix B, Figures 2 and 3), the result is a

parse of the input text being compiled. The role of the productions is

(1) to generate the successive states of the stack during a single

scan through the input text and (2) to transfer control to the proper

routines in the semantics whenever certain specified syntactic

constructs occur in the stack.

Each stack entry consists of three consecutive machine words:

the syntax word, used by the productions; and two semantic words ,

used by the semantics. The syntax word is discussed in the next

section. Details of the semantic words are described in Chapter 3, 5.4

The productions and semantics perform complementary functions

with regard to the main stack. The productions implement the analysis

of syntax by manipulating the syntax portion of the stack; the semantic

routines preserve all information needed for the generation of code,

updating the semantic portion of the stack whenever necessary.

Processing of Input Text

The compiler makes a single scan through the symbols in

the input text. These symbols fall into two classes: (1) those which

the productions have been set up to recognize as reserved words;

these words are part of the language in which the text is written

(example: DO or + in FORTRAM or ALGOL); (2) all other symbols ,

which are referred to as identifiers .

When a reserved word is scanned, a representation of this

symbol is pushed onto the main stack (in the syntax word); when an

identifier is scanned, an item denoting "identifier" is entered instead.

The corresponding semantic words are of no relevance at this point.

Following a scan operation, the top few syntax entries are

compared with a table of expected stack configurations , i.e.

expected states of the stack. This table is part of the productions.

When a match is found, a collection of routines associated with the

matched configuration are executed. These routines may do any of the

following: modify the syntax portion of the stack; jump to semantic

routines; record an error message; cause one or more symbols to be

scanned; or specify the next configuration to be compared with the

stack.

The process of scanning and matching continues until all the

symbols in the input program have been scanned or a termination

command is reached in the productions or semantics.

CHAPTER 2

PRODUCTION LANGUAGE

3*
Production Language (PL) is the language used for specifying the

productions. It is translated by the PL processor. In what follows,

the term productions will refer to the PL program as well as the result of its

translation; and the two will be treated as if identical.

As noted in Chapter 2 the function of the productions is (1) to

generate successive states of the main stack on the basis of a single scan

through the input text and (2) to transfer control to the proper routines in

the semantics whenever certain specified syntactic constructs occur in the

stack.

The following sections present the syntax of PL. A guide to the

writing of productions is given in Appendix B.

1 . PROGRAM STRUCTURE

A PL program consists of a collection of declarations followed by a

number of lines each of which is called a production. The entire program is

terminated by the symbol END.

2. DECLARATIONS

2 .1 CHOPPER DECLARATIONS

NORM < argument>

VTERM < argument >

ITERM < argument >

Permissible argument: A seguence of Lincoln Writer codes (in octal)

separated by spaces.

Description: A code appearing in a NORM declaration is treated as a normal

character; a code appearing in a VTERM or ITERM declaration is treated as a

visible terminator or ignored terminator, respectively. This terminology is

explained below.

* Production language uses a slightly modified version of the formalism
introduced in Reference 3 .

5

Each VITAL symbol is composed of one or more VITAL characters.

A VITAL character may be either a single Lincoln Writer character or a

compound character composed of at most two "dead" (non-spacing) and two

"line" (spacing) Lincoln Writer characters.

A VITAL symbol is either (1) a single Lincoln Writer character which

is classified by the system as a terminator (either visible or ignored), (2)

a compound character (which is automatically classified as a terminator),

or (3) a string of non-terminators between two terminators. (Non-terminators

are called normal characters.)

An ignored terminator, unlike a visible terminator, is not pushed

onto the stack by the scan operation (see Chapter 1, section 2). For example,

a space is generally treated as an ignored terminator.

Each Lincoln Writer code is classified by the system in a standard

manner (see Appendix A) unless it is reclassified by a CHOPPER DECLARATION.

In Chapter 3 the term identifier will be used to refer to any VITAL

symbol whose first character is not an integer.

2.2 RESERVED WORDS: RES < argument>

Permissible argument: A seguence of VITAL symbols separated by spaces

(not commas).

Description: Symbols declared as reserved words become part of the language

whose syntax is being specified.

Remarks: If a non-printing character or a character which is part of PL is to

be declared a reserved word, it must be denoted by a special identifier to

avoid confusion.

character special identifier

pHAND

pEQ

superscript pSUP

subscript pSUB

normal pNOR

pAROW

|| pDBAR

carriage return pCR

If a word which is part of PL is to be declared a reserved word, it

must be preceded by a "q". The words in this category are EXEC, STAK,

UNSTK, SCAN, ERROR, HALT, NEXT, CALL, RETURN, TEST, DONE, END,

RES, INT, NORM, VTERM, ITERM.

2.3 INTERNAL SYMBOLS: INT < argument>

Permissible argument: A sequence of VITAL identifiers separated by spaces

(not commas).

Description: Internal symbols are symbols which are neither part of the

language being specified nor part of Production Language. They are entries

to be made by the compiler in the syntax portion of the stack.

2.4 CLASS NAME: < argument 1> = < argument 2 >

Permissible arguments

argument 1: any VITAL identifier (the "class name"),

argument 2: a sequence of reserved words (see 2.2).

Example: e BOOL = V A THEN pAROW

Description: A class name is simply a notational convenience; a production

containing a class name is equivalent to a sequence of productions con-

taining each of the corresponding reserved words.

2.5 CLASS NAME WITH ASSOCIATED SEMANTIC ROUTINE NUMBERS

Example: TOTH = TO 116 THRU 117

Form: Same as 2.4, except that a triple equal sign is used and each

reserved word is followed by an associated semantic routine number.

The use of such a class name is discussed in section 3, 5 .

3. PRODUCTIONS

The syntax of a production is described most easily by example.

The following production is typical.

BE3 | .IF E THEN- ICL ,EXEC 110 -SO,
t t t t t

® ® @® ©

J^ BE3 is a label. Labels must be followed by || . (All labels are optional.)

^2 IF E THEN is one member of the table of "expected stack configurations"

discussed in Chapter 1, section 2. In this example, IF and THEN are

reserved words; E (denoting "expression") is an internal symbol.

The routines indicated by (§} — (5 are executed only if the top of

the main stack matches (2).

(3} The arrow indicates that the part of the stack matching ^2 is to be replaced

by A (which can be empty). The absence of an arrow indicates that no

alteration is to be made.

@ ICL is an internal symbol (denoting "if clause"). In the example, the top

three entries in the stack are removed and ICL is pushed onto the stack in

the syntax word. The contents of the corresponding semantic word are

determined by semantic routine 110 (see (5)).

Formal Semantic Language provides primitives for manipulating the

semantic words of the stack once a match is found. The semantic words

associated with the stack syntax words corresponding to 2 are denoted by

Ln, LLn (1 = n = 7) (recall that there are two semantic words per stack entry;

Ln is the first, LLn the second). The semantic words associated with the

stack syntax words corresponding to (4 are denoted by Rn, RRn (1 = n = 4).

(LI, LL1 and Rl, RRl refer to the top of the stack.) See Chapter 3 , 1.2.

(5) EXEC 110 causes transfer of control to semantic routine 110 (see Chapter 3,

5.1). A class name may be used instead of a number. In such a case, a

a transfer will be made to routine n, where n is the number associated with

the reserved word actually in the stack (see 2.5).

>•-SO is a transfer indicator, causing the main stack to be compared next

with the production labelled SO. If no transfer indicator appears, the stack

will be compared with the succeeding production.

Both EXEC 110 and "-SO are known as actions. Additional actions

are:

UNSTK m:

STK n:

STAK < argument>:

SCAN:

SCAN n:

ERROR n:

HALT n:

NEXT <argument>:

TEST < arguments

RETURN:

CALL <argument>

remove the top m entries from the stack and save in
storage

take the n*n entry (counting from the top) removed by
UNSTK and push it onto the stack (including both the
syntax and semantic words).

push the argument (a reserved word or internal symbol)
onto the stack.

scan one input symbol.

scan n input symbols.

store error message n in output buffer (for either console
or Xerox print-out).

halt execution of productions, store n in output buffer,
return to system control.

same as *• < argument > (see (§)).

same as *• < argument > , except that the action has effect
only if SIGNAL has the value TRUE (see Chapter 3, 1.2 0).

return to production which made the last CALL (see below).

(where argument is a production label): execute the productions
starting at the label, and continue until the action RETURN.

4. REMARKS

Two frequently used symbols which are part of PL are SG (sigma) and

I (identifier). When used in part "L of a production, SG matches any item

in the stack. "I" is the symbol pushed onto the stack whenever an identifier

is scanned. (See Chapter 1, section 2, OPERATION OF TRANSLATOR).

CONTENTS OF CHAPTER 3

CHAPTER 3 FORMAL SEMANTIC LANGUAGE

1. PRIMARIES AND BOOLEAN PRIMARIES

Primaries

1.1 System Cell

1.2 Production Operand

1.3 Cell Identifier

1,4 Stack Identifier

1.5 Table Operand

1.6 Flad

1.7 Chain

1.8 Contents

1.9 Location

1.10 Type

1.11 Absolute Value

1.12 Constant

1.13 Parenthesized Arithmetic Expression

1.14 Code-bracketed Expression

1.15 Store with Value

1.16 Tag

1.17 Fix

Boolean Primaries

1.18 Boolean Constant

1.19 Test

1.20 Constant Test

1.21 Relation

1.22 Boolean Cell

1.23 Parenthesized Boolean Expression

10

2. ARITHMETIC AND BOOLEAN EXPRESSIONS

3. UNCONDITIONAL AND CONDITIONAL STATEMENTS

Unconditional Statements

Storage Manipulation

3.1 Stack Commands

3.2 Enter Command

3.3 Store

3.4 Tally

3.5 Storage Operations

Control

3.6 Assign

3.7 Label

3.8 Subroutine Name, Subroutine Entrance Name

3.9 Return

3.10 Exit

3.11 Jump

3.12 Call

3.13 Fault

3.14 Stop

3.15 Complete

Conditional Statements

3.16 If . . . then

3.17 If not . . . then

3.18 If . . . then . . . else

4. DECLARATIONS

4.1 Cell Delcaration

4 . 2 Index Declaration

4 . 3 Run-index Declaration

11

4.4 Table Declaration

4.5 Stack Declaration

4.6 Run-stack Declaration

4 . 7 Data Declaration

4 . 8 Sub-data Declaration

5 . GENERAL FEATURES

5 .1 Program Structure

5.2 Comments

5 .3 Code Brackets

5.4 Semantic Description

12

CHAPTER 3

FORMAL SEMANTIC LANGUAGE

1,2
Formal Semantic Language (FSL) is the language used to specify the

semantics. It is translated by the FSL processor. The components of FSL

are discussed in the first four sections below. Section 5 discusses general

features of the language. Careful attention should be given to 5.3 (code

brackets) and 5.4 (semantic description).

1. PRIMARIES AND BOOLEAN PRIMARIES

The primaries and boolean primaries are the basic constituents of FSL.

They include variables whose values are maintained by the system or by

the user, as well as operators.

For example, CODELOC (see 1.1) is a system-maintained variable

whose value is the address in which the next compiled instruction will be

stored. Cells (see 1.3), which are the simplest user-maintained variables,

correspond to single machine words.

In the description of the syntax of an operator, the argument is

denoted by the symbol < argument >.

Primaries

1.1 SYSTEM CELL: CODELOC, STORLOC, PERSLOC, ACCUM, MARK,
MAIN, SAVCELL

Description: The system cells contain pointers or bits that are useful to

both the language designer and the system.

CODELOC points to the location in which the next word of code
will be stored.

STORLOC points to the next free register in the run-code storage
area. (The term run code refers to the code generated by the
compiler.) Proper manipulation of STORLOC enables the compiler-
writer to conserve storage space at the time the run-code is
executed.

13

PERSLOC points to storage ("persistent storage") that can be
loaded during compilation and utilized during the running of the
compiled program. For example, non-integer constants may be
stored in the PERSLOC area.

ACCUM contains information concerning the state of the run-code
accumulator. For example, whenever an instruction is compiled
which loads the accumulator, the ß INA bit in ACCUM is set to 1
(see 4.8). When an instruction is compiled which stores from the
accumulator, the ß INA bit is cleared. Other bits which may be set
are: ß DIR, ßNEG, and ßCON (see 4.8).

MARK preserves information used during the compilation of (possibly
recursive) subroutines. It points to a register containing the return
address associated with the last subroutine call or subroutine
entrance call (3.12). This register implements a push-down stack
used by the RETURN command (3.9), thus permitting recursive sub-
routine calls.

MAIN points to the top of the main stack (see Chapter 1, section 2).

SAVCELL points to a temporary address generated by the SAVTEMP
statement (see 3.5).

1.2 PRODUCTION OPERAND: LI , LL1 , . . . , L7 , LL7 , Rl , RR1 , . . . R4 , RR4

Description: Ll, LLl — L7, LL7 are the first seven semantic entries of the

main stack before a production is executed. Rl, RRl — R4, RR4 are the first

four semantic entries of the stack after completion of the entire production.

(See Chapter 1, section 2; also Chapter 2, section 3.)

Remarks: The production operands provide a convenient way of manipulating

the semantic portion of the stack. For example, the store commands (see 3.3)

"Ll - R2; LLl - RR2; L2 - Rl; LL2 - RRl" permute the contents of the top

two semantic entries.

1.3 CELL IDENTIFIER

Form: Any VITAL identifier (see Chapter 2 , section 2.1).

Description: Cells are single storage locations within the compiler. Cells

must appear in a cell declaration (4.1) before being used elsewhere.

14

1.4 STACK IDENTIFIER

Form: Any VITAL identifier

Description: A stack identifier is the name of a push-down stack. Before

its use, the identifier must appear in a STACK or RSTAK declaration (4.5, 4.6),

in which case it refers to a stack in the compiler or run-code, respectively.

The stack may be operated upon by means of the stack commands

(3.1). When used as an ordinary operand the value of a stack identifier

is the entry at the top of the stack.

1.5 TABLE OPERAND

Examples: SYMTABL { Ll, ADDR }; JMPTABL { L3, LOC, 1}; LABLTAB f 0, COL31

Form: < argument 1> { < argument 2>, < argument 3>, < argument 4 > 1

Permissible arguments

argument 1

argument 2

argument 3

argument 4

table identifier, i.e. identifier appearing in a table declaration (4.4]

primary or 0.

column name (see 4.4).

0 or 1 ("mode"; optional if 0).

Description: The value of the table operand is the table entry found by the

following procedure. The first column of the table is searched for an entry

equal to argument 2 if it is a primary. The value of the table operand is taken

from the row containing this entry and the column identified by the column name.

If argument 2 is 0, the row used is that referenced by the last table operand

search.

If the mode (argument 4) is 0 or unspecified, the table is searched

upward from the bottom entry; if the mode is 1, the search starts upward from

the last row referenced by a table operand search (or from the bottom entry

if there has been no previous search).

If no match is found for the primary, SIGNAL (see 1.22) is set to

FALSE (see 1.18) and the table operand is given the value 0.

Like most primaries, a table operand may appear either inside or

outside code brackets (see 5.3).

15

1.6 FLAD: FLADl, ..., FLAD4

Description: Flads are intended to facilitate forward references such as

jumps to program locations not yet determined. FLADn is used as an operand,

its value being the value of CODELOC at the time the assign command

FLADn "*• is executed (see 3.6).

Note: (1) Each flad is a stack; the value of FLADn is the entry at the top

of the stack. To use flads in nested procedures, do a PUSH FLADn (see 3.1)

at each successive level of nesting. The assign command will automatically

pop the stack.

(2) A flad can handle forward references only; its value depends upon

the corresponding assign command which first follows its use.

1.7 CHAIN: (D < argument>

Permissible argument: primary

Description: The purpose of the chain operator is to permit compilation of

forward and backward references such as jumps to program locations; hence,

the operator appears only within code brackets (see 5.3).

The expression (£) < argument> is used as an operand, its value

being a semantic description (5 .4) of the value of CODELOC (see 1.1) atthetime

the assign command < argument> *• is executed (see 3.6). The system handles

the problems arising from the separation in time between the appearance of (£)

< argument> and the corresponding assign command.

The argument of the chain operator must have as its value the address

of an arbitrary machine word initially containing 0. Atypical example of

the use of a chain is "0 - TEMP; X TEMP - VAR; g JUMP 0 VAR @ "

(TEMP and VAR are cells; see 5.3 for a discussion of the symbols E=] ... [5| .)

TEMP is called the cell through which VAR is chained. If VAR is chained

through a different cell, the chain takes on a new value. The original value

is restored by chaining VAR through TEMP once again (provided TEMP has not

been modified).

L6

1.8 CONTENTS: k< arguments

Permissible argument: primary

Discussion: Both the contents of a machine word and its address may be

needed during compilation. This and the following operator provide a way

to refer to each of these items in terms of the other. For example, if TEMP

is a cell, the value of X TEMP is the address of the machine word containing

the value of TEMP. The value of kTEMP is the contents of the word is whose

address is the value of TEMP (assuming that the value of TEMP is an address).

The term run code used below refers to the code being compiled.

Description: Outside code brackets (see 5.3), it is assumed that the value

of the argument is an address. The value of k <argument> is the present

contents of this address.

Inside code brackets, it is assumed that the value of the argument

is a semantic description (see 5.4) of a run-code address. The value of

k <argument> is a semantic description referring to the contents of this

address, i.e. to this address deferred.

Remarks: The contents operator may be nested only once. I.e. kk < argument>

is permissible; kkk < argument> is not.

1.9 LOCATION: X <argument>

Permissible argument: table identifier or primaries 1.1 — 1.8

Description: When the argument is a table identifier, the value of X < argument>

is a pointer (a 17-bit address) to the first free register in the table.

The value of X <argument> is described separately for each of the

primaries 1.1 — 1.8.

(1) System Cell. The value of X < argument> is the address of the machine

word corresponding to the system cell.

(2) Production Operand. When used outside code brackets (see 5.3), the

value of X < argument> is the address of the machine word corresponding to

the production operand.

17

When used inside code brackets, the value of X <argument> is a

semantic description (see 5.4) of the operand (e.g. machine address, index

number) containing the operand described by < argument> . Because of the

use of persistent storage (see 1.1) and pointers in the compilation process,

the former operand already exists . However, such an operand would not be

available for X X < argument> , and nesting is therefore not allowed.

(3) Cell Identifier. The value of X < argument>is the address of the machine

word corresponding to the cell identifier.

(4) Stack Identifier. The value of X < argument> is a 17-bit pointer to the

top of the stack (when used outside code brackets with a stack) or a

semantic word description of this pointer (when used inside code brackets

with a run-stack). See 4.5, 4.6.

(5) Table Operand. The value of X < argument>is the address of the word

in the table containing the looked-up table entry (see 1.5).

(6, 7) Flads, Chains. The value of X < argument> is a semantic description

of a run-code address containing the value of the flad or chain.

(8) Contents. The location operator is the inverse of the contents operator.

1.10 TYPE: t < argument>

Permissible argument: primary

Description: It is assumed that the value of < argument>is a semantic

description (see 5.4). The value of t < argument > is this description with

all bits masked out except the data type bits (4.1 — 4.5).

1.11 ABSOLUTE VALUE: || < argument >

Permissible argument: production operand (or operand whose value is a

semantic description (see 5.4).

Description: The address portion of a production operand sometimes contains

an address in complemented form. | < argument > differs from <argument > only

only in that the address is represented in non-negative form.

18

1.12 CONSTANT

Description: Numerical constants may be used in FSL. Outside code

brackets, a constant c is interpreted as a cell with value c. Inside code

brackets, c is interpreted as an operand whose value is a semantic

description (see 5.4) of a run-code register containing c.

1.13 PARENTHESIZED EXPRESSION: (< argument >)

Permissible argument: arithmetic expression (see Section 2).

Remarks: Parentheses may be used whenever desired to indicate the grouping

of arithmetic expressions.

1.14 CODE-BRACKETED ARITHMETIC EXPRESSION: 0 < argument > |5j

Permissible argument: arithmetic expression.

Description: The value of the bracketed expression is a semantic description

(see 5.4) of the result of performing the operation(s) specified by the

arithmetic expression.

In addition to being a primary, a code-bracketed arithmetic expression

may cause run-code to be generated (see 5.3).

1.15 STORE WITH VALUE: < argument 1 > = < argument 2 >

Permissible arguments

argument 1: arithmetic expression. (This includes primaries, see section 2.)

argument 2: primary.

Description: STORE WITH VALUE is both a primary and an unconditional

statement. It has the same effect as an assignment statement. In addition, it

may be used as a primary having the same value as the first argument.

Example: TEMPO = TEMPI + 1 = TEMP2.

TEMPO is stored into TEMPI; the primary TEMPO = TEMPI has the same value

19

as TEMPO. This value is incremented by 1 and the result is stored in TEMP2;

this result is likewise the value of TEMPO = TEMPI + 1 = TEMP2. The same

effect would be obtained if parentheses were used as follows: (TEMPO = TEMPI) +

1 = TEMP2.

1.16 TAG: <argumentl>| <argument2>

Permissible arguments

argument 1: primary.

argument 2: list of data or bit identifiers separated by commas (see 4.7, 4.8).

Example: TEMP | ABOOL, ßINA

Description: Argument 1 is tagged with the bits specified in argument 2. The

tagging operation consists of clearing the left half of the word being tagged,

followed by successive unite operations with the left half of words containing

the specified bits. Thus, the right half of the tagged word is preserved.

1.17 1 FIX: < argument >

Permissible argument: primary whose value is a semantic description.

Description: The fix operation is used only within code brackets. The

operand described by the primary is made into an integer by means of truncation.

Boolean Primaries

1.18 BOOLEAN CONSTANT: TRUE, FALSE

Description: The two boolean constants are the values of the boolean

primaries which follow. They may be used as operands of the store command

(3.3), in a manner similar to numerical constants (see 1.12).

1.19 TEST: <argumentl > IS < argument2 >

Permissible arguments

argument 1: primary.

20

argument 2: data id, sub-data id, or bit id (see 4.7, 4.8, 4.9).

Description: This primary has the value TRUE or FALSE depending on

whether the argument on the left is or is not tagged with the bits specified

on the right.

1.20 CONSTANT TEST: CONST < argument >

Permissible argument: primary.

Description: The value is TRUE or FALSE, depending on whether or not the

ß CON bit is set in the argument. This primary is meaningful only when its

argument is a production operand or other operand whose value is a semantic

description (see 5.4). It can be used outside code brackets only.

1.21 RELATION

Example: < argument > = < argument > (Relations which can be used other

than include f , < , > , ^, ^)

Permissible argument: primary

Description: The primary has value TRUE if the relation is satisfied, FALSE

otherwise.

1.22 BOOLEAN CELL: OK, SIGNAL

Description: The cells OK and SIGNAL are given the value TRUE or FALSE

by the user and system, respectively.

If OK is set FALSE, no further code will be produced, though the

input will continue to be scanned. OK cannot be reset once it is FALSE;

it is intended to be used only for irrecoverable syntax errors.

The system gives SIGNAL the value TRUE or FALSE upon successful

or unsuccessful completion of certain routines. For example, SIGNAL is set

TRUE or FALSE depending upon whether a table search does or does not succeed

in finding the desired item (see 1.5).

21

1.23 PARENTHESIZED BOOLEAN EXPRESSION: (< argument >)

Permissible argument: Boolean expression (see Section 2).

Description: Parentheses may be used whenever desired to indie: to the

grouping of boolean expressions.

2. ARITHMETIC AND BOOLEAN EXPRESSIONS

Arithmetic expressions are formed from the primaries and the operators

+ , - (both binary and unary), *, /, and exponentiation.

Boolean expressions are formed from the Boolean primaries and the

operators ~, A , V (inclusive or), (+) (exclusive or). The usual dominances

apply but may be overridden by parentheses.

Primaries and boolean primaries are themselves considered as

arithmetic and boolean expressions, respectively.

3. UNCONDITIONAL AND CONDITIONAL STATEMENTS

The statements of FSL consist of commands used for manipulating

storage and modifying program flow.

Unconditional Statements

Storage Manipulation.- The following commands facilitate manipulation of

storage.

3.1 STACK COMMANDS

PUSH < argument 1>

PUSH [< argument 1 > , < argument 2 > }

POP < argument 1 >

POP {< argument 1 > , < argument 2 > }

Permissible arguments

argument 1: stack identifier (see 1.4).

argument 2: primary.

Description: If argument 2 is not specified, PUSH takes the second argument

as zero, while POP simply discards the top entry of the stack.

22

When the commands are used outside code brackets, PUSH places

the value of argument 2 on top of the stack, while POP removes the top

item in the stack and stores it in argument 2.

When commands are used inside code brackets, they describe

run-code operations. The value of argument 2 must therefore be a semantic

description (see 5.3, 5.4).

3.2 ENTER COMMAND

The ENTER command is used to enter a new row in a table.

Example: ENTER { TABL, TEMPI, TEMP2, TEMP3]

A new row is entered in the table TABL.

TEMPI is stored in column 1, TEMP2 in column 2, etc.

Remarks: The first argument must be a table identifier. The remaining

arguments must be arithmetic expressions. The number of arithmetic expressions

can be less than the number of columns in the table.

SIGNAL is set to FALSE if the table is already filled. (The number of

rows in a table can be specified by the compiler writer (see 4.4).

3 . 3 STORE: < argument 1 > - < argument 2 >

Permissible arguments

argument 1: primary.

argument 2: primary or Boolean cell .

Remarks: The store operation is non-destructive. See 5.3 for a discussion

of the influence of code brackets on the interpretation of the arguments .

23

3.4 TALLY

TALLY < argument 1 >

TALLY { < argument 1 > , < argument 2 > }

Permissible arguments

argument 1: primary.

argument 2: arithmetic expression.

Description: Tally adds the value of argument 2 to argument 1. If the

second argument is unspecified, it is taken as 1.

3.5 STORAGE OPERATIONS

LOAD < argument >

SAVLOAD < argument >

SAVTEMP < argument >

Permissible argument: Production operand (or operand whose value is a

semantic description (see 5.4).

Description: The accumulator operations are used within code brackets only.

(a) LOAD < argument > , SAVLOAD < argument >

Run-code is compiled for a store operation from the operand described

by < argument > to the run-code accumulator. The ßINA bit is set in ACCUM

(see 1.1). Further, in the case of SAVLOAD, code is compiled for a store

of the previous contents of the run-code accumulator into a temporary register;

a semantic description of this register is placed in the appropriate stack entry.

(b) SAVTEMP < argument > ("save in temporary location")

The argument is a semantic description of a run-code operand, which

may be either an index register, ordinary memory register, or the run-code

accumulator. Run-code is compiled for a store of this operand in a temporary

location. The original semantic description is replaced by a semantic

description of this location.

Control.- The following commands are used to implement transfers of control

such as jumps, subroutine calls, error exits, or returns to the VITAL controller.

24

3.6 ASSIGN: < argument >-

Permissible argument: flad or chain (see 1. 6, 1.7).

Description: The flad or chain takes the value of CODELOC at the time the

ASSIGN command is executed.

The assign command can be used inside code brackets only.

3 . 7 LABEL: < argument > r

Permissible argument: any VITAL identifier (referred to below as a label).

Description: Labels are intended for use outside code brackets with the

JUMP command (see 3.11).

A labelled statement may be located either before or after a JUMP

to it.

3.8 SUBROUTINE NAME: < argument > ^

SUBROUTINE ENTRANCE NAME: < argument > t

Permissible argument: any VITAL identifier (referred to below as name).

Description: The name is intended for use with the CALL command (see 3.12)

3.9 RETURN: RETURN

Permissible argument: none

Description: The RETURN statement must be the logical end of a subroutine.

3.10 EXIT: EXIT

Permissible argument: none

Description: EXIT terminates execution of a semantic routine in which it appears

(see 5.1).

25

3.11 JUMP: JUMP < argument >

Permissible argument:

Outside code brackets: label (see 3.10).

Inside code brackets: primary whose value is a semantic description (see

5.4).

Description: A JUMP is an unconditional transfer of control. (See description

of flads and chains ,1.6 and 1.7.)

3.12 CALL: CALL < argument >

Permissible argument: subroutine name or subroutine entrance name (see 3.8)

Description: The CALL transfers control to the subroutine or entrance and

saves in MARK a pointer to a register containing the return address. Calls

may be recursive (see 1.1).

3.13 FAULT: FAULT < argument >

Permissible argument: integer

Description: Control is returned to the controller, which informs the user

of the fault number and awaits further commands. This command is intended

for use when irrecoverable semantic states occur.

3.14 STOP: STOP

Permissible argument: none

Description: STOP returns control to the user via the VITAL controller. It can

be used inside code brackets for logical termination of the run-code.

3.15 COMPLETE: COMPLETE

Permissible argument: none

Description: COMPLETE initiates system functions needed in order to

terminate compilation. Control passes to the VITAL controller.

26

Conditional Statements

3.16 IF .. . THEN: IF < argument 1 > THEN < argument 2 > J[

Permissible arguments:

argument 1: Boolean expression.

argument 2: sequence of statements (conditional or unconditional)

separated by semicolons.

Description: The sequence of statements is executed or not executed,

depending on whether argument 1 has value TRUE or FALSE, respectively,

3.17 IFNOT...THEN: IFNOT <argument 1 > THEN <argument2>JL

Permissible arguments

argument 1: Boolean expression.

argument 2: sequence of statements (conditional or unconditional) separated

by semicolons.

Description: The sequence of statements is executed or not executed,

depending on whether argument 1 has value FALSE or TRUE, respectively.

The IFNOT statement is generally more efficient than an IF statement with a

negated Boolean expression.

3.18 IF.. .THEN.. .ELSE: IF < argument 1 > THEN < argument 2 >

ELSE < argument 3 > JJ_

Permissible arguments

argument 1: Boolean expression.

argument 2 and 3: sequence of statements (conditional or unconditional)

separated by commas.

Description: If argument 1 has value TRUE, argument 2 is executed; if it has

value FALSE, argument 3 is executed.

I!

4. DECLARATIONS

4 .1 CELL DECLARATION: CELL < argument >

Permissible argument: list of cell identifiers separated by commas.

Description: The CELL declaration specifies single storage locations

extant at compile time. The declaration must precede all other uses of

the item being declared; the same is true of all other declarations.

4 . 2 INDEX DECLARATION: INDEX < argument >

Permissible argument: list of VITAL symbols separated by commas (and not

beginning with a number).

Description: Identifiers declared as indices may be used by the compiler in

the usual manner as subscripts and in arithmetic expressions. Indices are

treated in the same way as integers but may lead to more efficient code in

TALLY, subscripts, etc. Eight indexes are available.

4 . 3 RUN-INDEX DECLARATION: RINDEX < argument >

The details are similar to 4.2, except that the index is part of the run-code

rather than the compiler.

4.4 TABLE DECLARATION

Example: TABLE SYMBOL 400 ID SEMANT EXTRA

Form: TABLE <argument 1 ><argument 2><argument 3 >

Permissible arguments

argument 1 (name of the table): any VITAL identifier.

argument 2: integer (the number of rows in the table).

argument 3: list of VITAL identifiers separated by spaces (names of the columns)

Description: The TABLE declaration specifies tables that are used at compile

time. More than one table may be declared by separating each complete table

description with a comma.

28

4 . 5 STACK DECLARATION: STACK < argument >

Permissible argument: list of VITAL identifiers (stack names) separated by-

commas .

Description: The STACK declaration specifies push-down stacks used by

the compiler. The depth of the stack is 100o# unless some other depth is
o

indicated by placing a digit after the identifier (the two being separated by

a space).

4 . 6 RUN-STACK DELCARATION: RSTAK < argument >

The details are similar to 4.5, except that a run-stack is part of the run-code

rather than the compiler.

4 . 7 DATA DECLARATION: DATA < argument >

Permissible argument: list of VITAL identifiers (data identifiers) separated

by commas.

Description: Data identifiers are used to tag and test (see 1.16, 1 . 19)

operands with bit configurations at compile time. Thirty-two is the maximum

number of data and sub-data identifiers which can be declared (see 4.8).

At present, VITAL provides four common data identifiers, with no need

for their explicit declaration: ABOOL, AINTGR, AFRACT, AREAL (see 5.4).

4.8 SUB-DATA DECLARATION

BDATA < argument >

IDATA < argument >

FDATA < argument >

RDATA < argument >

Permissible argument: list of VITAL identifiers (sub-data identifiers) separated

by commas.

29

Description: The system-provided DATA identifiers A BOOL, AINTGR, AFRACT,

AREAL (see 4.7) influence the type of run-code that is generated (see 5.4).

The user may create subdivisions of these DATA identifiers by means of the

declarations BDATA, IDATA, FDATA, RDATA, respectively. When a semantic

description is used to determine the proper run-code to be generated (see

5.3, 5.4), a semantic description tagged with a BDATA identifier is treated

as though it were tagged with A BOOL (analogously for IDATA, FDATA, and

RDATA identifiers).

When run-code is compiled for a (unary or binary) operation, a

semantic description of the result is generated (see 1.14). This semantic

description (see 5.4) is either tagged with the data-type determined by the

operation and operands; or, if this data-type coincides with the data types

of the operands and these operands were originally tagged with a single sub-

data identifier, then the semantic description is tagged with the sub-data

identifier.

5 . GENERAL FEATURES

5 .1 PROGRAM STRUCTURE

An FSL program consists of a collection of declarations (see Section 4)

followed by a collection of semantic routines. A semantic routine consists of

the following items in succession:

(T) # followed by an integer (this integer is used by the productions in order to
call the routine; (see Chapter 2, Section 3).

(2) space or tab

(3) seguence of statements (conditional or unconditional) separated by semi-
colons .

(4) 4 (Note: If a conditional statement is immediately followed by _£ , the
symbol _[]_ (see 3.17, 3.18, 3.19) need not be typed.

Each declaration must terminate with a semicolon. The first and last

items in the program must be BEGIN and END respectively.

30

5.2 COMMENTS

A comment can be inserted at any point in the program. It must be

preceded by two asterisks and followed by a carriage return.

5.3 CODE BRACKETS

The routines in an FSL program describe not only the operands and

operators of the translator but also those in the run-code, i.e. the code being

compiled. To distinguish between these two, the latter are enclosed within

code brackets: £=] ... [5| ; corresponding run-code is generated when

appropriate.

Most symbols can be used both inside and outside these delimiters,

but with different effects. An example is helpful in explaining the situation.

Example: E=] L4 + L2 0 - R2

The primaries L4, L2, R2 are variables with values, whether they

appear inside or outside code brackets. However, their interpretation in

connection with operators is different in these two cases. Outside code brackets ,

the primary itself is an operand (in the same sense that an address is an operand

in machine language). Inside code brackets, it is assumed that the value of

the primary is a semantic description (see 5.4). This description determines

the operand in the run-code being generated. For example, in "L4 + L2" above,

"+" refers to a run-code addition whose operands are described by L4 and L2 .

On the other hand, the arrow (-*) outside the code brackets refers to a compiler

store operation whose operands are R2 and |c] L4 + L2 f3] (both of which

are primaries; see 1.2 and 1.14.

5.4 SEMANTIC DESCRIPTION

A semantic description is a 3 6-bit word containing information needed

by the system when generating run-code. For example, this information

31

includes: (1) bits describing data types (real, integer, etc.), which influence

the kind of run-code that is generated; (2) bits referring to a run-code address

or index number, which determine the operands of the run-code. The contents

of the first word in each semantic entry of the main stack is a semantic

description. (However, the second word in each semantic entry has no

pre-determined format; it is unused by the system, being intended to give

the user ample space to store semantic information.)

The bit identifiers and their interpretations are given below.

Bits 1.1 - 2.8

ßDIR (direct)

ßNEG (negative)

ßlNDX (index)

ßINA (in run-accumulator)

ßCON (constant)

A BOOL (data type)

If no ß-bits are set, the address in 1.1 —
2 .8 is taken as the run-code operand.

Run-code operand should be a register con-
taining the number in bits 1.1 — 2.8.

Bits 1.1 — 2.8 refer to a run-code operand
(i.e. address or index register number) the
complement of whose contents is desired.

Bits 1.1 — 2.8 specify an index number.

Operand is run-code accumulator.

Bits 1.1 — 2.8 contain a pointer to a system-
created table containing all constants in the
input text being compiled.

The data types are not single bits, but
bit configurations (see 4.7). The run-code
generated depends upon these data types,
see also 4.8.

3 2

APPENDIX A

CONTROL META-COMMANDS*

1. LANGUAGES

A VITAL language consists of three types of elements: one set of

productions , one set of semantics , and any number of programs. Each

element consists of a symbolic directive (the source text) and one or more

binary files (the results of compilation). All information for a language is

maintained in the user's APEX directory.

Most of the VITAL meta commands are used to create, modify, and

compile the various elements of a language. Before using these commands,

the user must direct VITAL's attention to the desired language via the

command LANG and then to the desired element of that language via one of

the commands PROD, SEM, PROG. A language or a program under a language

may be deleted via the DROP command; productions and semantics are

deleted individually via the FRESH command.

COMMANDS

LANG LL

LANG switches VITAL's attention from the current language, if any,

to the language LL. The current language is frozen in its current state. (If

the current language is already LL, LANG LL freezes the current element of

LL (productions, semantics, or a program) in its present state and removes

that element from VITAL's attention.)

1 . If LL is not a defined language name, or if both the
productions directive and the semantics directive for
LL are fresh (contain no text), VITAL will define LL
as a language name, create fresh productions and
semantics directives, and respond "FRESH LANG".

2. If LL is a defined language name and either the production's
directive or the semantics directive contains text, VITAL
will respond "OK".

* By James E. Curry, C. W. Adams Associates, Inc.

33

In either case, all subsequent commands until the next LANG command will

refer to the language LL or one of its elements .

LANG has no effect on the state of an existing language; thus no

harm is done if an existing language is accidentally referred to via LANG.

If a new language is accidentally created with LANG, some superfluous items

are created in the user's directory; these may (and should) be deleted by

dropping the language via DROP.

LL must be an acceptable APEX name; it must begin with an alphabetic

character and contain only alphanumeric characters (no periods).

The language name LL is entered in the user's directory as 9LL• > it

is defined as a file group (map) which contains the names of all programs

defined under LL. 9LL' is entered into the file group 9-VITAL.

The productions directive and the semantics directive for LL each

consist of two files named 9LL- ID, 9LL-1L and 9LL-2D, 9LL-2L,

respectively. These files are not entered into any file group.

PROD

The PROD command is legal whenever VITAL's attention is directed

to a language LL or to one of its elements. PROD switches VITAL's attention

to the productions of LL; the current element of LL under VITAL's attention,

if any, is frozen in its present state. (If the productions of LL are currently

under VITAL's attention, PROD has no effect.)

1. If the productions directive is fresh (contains no text,
VITAL will respond "FRESH".

2. If the productions directive contains text, VITAL will
respond "OL".

In either case, all subsequent commands until the next LANG, SEM, or

PROG command will reference the productions of the language LL.

PROD may not have an argument; since there is only one set of

productions for each language, it is not given a name.

34

PROD has no effect on the state of a language or on the user's

directory; if a set of productions is accidentally referenced via a PROD

command, no harm is done.

Note that the production of a language cannot be dropped via DROP

except by dropping the language itself. Use FRESH command to delete

productions.

SEM

The SEM command is legal whenever VITAL's attention is directed

to a language LL or to one of its elements. SEM switches VITAL's attention

to the semantics of LL; the current element of LL under VITAL's attention,

if any, is frozen in its present state. (If the semantics of LL are currently

under VITAL's attention, SEM has no effect.)

1. If the semantics directive is fresh (contains no text),
VITAL will respond "FRESH" .

2. If the semantics directive contains text, VITAL will
respond "OK".

In either case, all subsequent commands until the next LANG, PROD, or

PROG command will reference the semantics of the language LL.

SEM may not have an argument; since there is only one set of

semantics for each language, it is not given a name.

SEM has no effect on the state of a language or on the user's

directory; if a set of semantics is accidentally referenced via a SEM

command, no harm is done.

Note that the semantics of a language cannot be dropped via DROP

except by dropping the language itself. Use the FRESH command to delete

semantics.

PROG PP

The PROG command is legal whenever VITAL's attention is directed

to a language LL or to one of its elements, and if the productions of LL have

been compiled. (See note below.) PROG PP switches VITAL's attention to

3 5

the program P_P under LL; the current element of LL under VITAL 's attention,

if any, is frozen in its present state. (If the program PP is currently under

VITAL's attention, PROG PP has no effect.)

1. If P£ is not a defined program name under LL , or if the
directive for PP if fresh (contains no text), VITAL will
define P_P as a program name under LL, create a fresh
directive for PP, and respond "FRESH".

2. If PP is a defined program name under LjL and its directive
contains text, VITAL will respond "OK".

In either case, all subsequent commands until the next LANG, PROD, SEM,

or PROG command will reference the program PP.

PROG has no effect on the state of an existing program; thus no harm

is done if an existing program is accidentally referenced via PROG. If a

new program name is accidentally created with PROG, some superfluous items

are created in the user's directory; these may (and should) be delted by

dropping the program with DROP.

PP must be an acceptable APEX name; it must begin with an alphabetic

character and contain only alphanumeric characters (no periods).

The program name P_P under the language LL is entered in the user's

directory as 9LL'PP*; it is defined as a file group (which currently remains

empty). 9LL-PP' is entered in the file group 9LL' .

The directive for £P consists of two files named 9LL-PP' 3D and

9LL-PP- 3L. These files are not entered into any file group.

Note: Since the productions of LL specify the chopping rules for all programs

written in LL, the productions must be compiled before any program may be

defined under LL. (A program may not be compiled unless the semantics of

LL have also been compiled.) If the binary production files become

undefined at any point, (this occurs for FRESH and READ on productions),

the existing programs of LL remain defined but may not be referenced with

PROG until the binary production files are redefined via compilation. (If the

3 6

chopping rules for the language are changed in the process, all existing

program directives must be reconverted (see REC) •)

DROP

The DROP command is legal whenever VITAL's attention is directed

to a program PP under some language, or whenever VITAL's attention is

directed to a language LL and not to its productions to semantics (i.e.

after a LANG command but before any PROD or SEM command). The effect

of DROP is to undefine the program PT or the language LL, respectively.

1. If the program _PP under the language LL is currently under
VITAL's attention, VITAL will ask "DROP PROG?" and await
a response. If the user strikes the NO key, the DROP
command will be cancelled. If the user strikes the YES
key, VITAL will undefine the program name, the directive,
and all binary files for PP. VITAL's attention will then
be directed to the language LL but to no particular element
of LL.

2. If no element of LL is currently under VITAL's attention,
VITAL will ask "DROP LANG?" and await a response.
If the user strikes the NO key, the DROP command will
be cancelled. If the user strikes the YES key, the language
name and the directives and binary files for all the elements
of the language LL will be undefined. VITAL will respond
"CLEAN"; no language will be under VITAL's attention.
DROP may not have an argument; it always references the
current language or program.

Note that DROP cannot be used to undefine the productions or semantics of

a language, since these are essential to the definition of the language. The

FRESH command may be used to delete existing text from the productions or

semantics (as well as a program) of a language.

2 . DIRECTIVES — DIRECTIVE EDITING

DIRECTIVES

Each element of a VITAL language (productions, semantics, and

each program) has an associated directive. Each directive consists of two

37

files. One file, the dictionary, contains the character strings for all words

which appear in the source text; this file provides a means of associating a

13-bit internal symbol with each word. The other file, the text file, contains

the source text itself; each word is represented by its internal dictionary

symbol.

DIRECTIVE EDITING

The VITAL editing meta commands are legal whenever VITAL's

attention is directed to some element (productions, semantics, or a program)

of some language.

The editing commands accept arguments similar to MK5's; the

exceptions are: directive lines are referenced differently; the MOVE

destination is separated by V" rather than by tab; text may not be typed

after the editing argument, even if only one line is to be typed.

Directive lines are referenced by their first word. If the word used

to reference a line occurs only once as the first word on a directive line,

that line is referenced. If the word occurs more than once, the first occurrence

is the line referenced. If, however, the word is followed by "(k", k a

positive octal integer, the k occurrence is the referenced line.

A directive line may also be referenced as the n line above or below

a specified line by following the identifying word (or the "(k") with "+n" or

"-n", n a non-negative octal integer. (The algebraic sum is taken if more

than one "±n" is typed.)

There are two restrictions on referencing directive lines:

1. If a directive line begins with a space or a tab, that line may
not be referenced by the first word; the "±n" facility must
be used.

2. If the first word on a directive line contains a non-alphanumeric
character and is more than one character in length, that word
may not be used to reference the line; the "±n" facility must
be used. (This inconvenience will be removed soon.) The
legal forms of editing arguments are:

38

a. arg 1 (arg 1 <* arg 2 for MOVE)

b. arg 1 | n (arg 1 | n " arg 2 for MOVE)

c. arg 1 - arg 2 (arg - arg 2 *- arg 3 for MOVE)

where arg 1, arg 2 and arg 3 are directive line references as described

above. Type 1 specifies a single line; type 2 specifies n lines beginning

with "arg 1"; and type 3 specifies the lines from "arg 1" up to but not

including "arg 2". (The argument after the "V" may be present only for

MOVE; it specifies the destination of the block to be moved.)

The character "#" is a special argument which specifies the first

line of the directive if it occurs as "arg 1" and the (blank) line after the

last line of the directive if it occurs as "arg 2" or "arg 3".

Spaces and tabs may be used indiscriminately in editing arguments;

they are always ignored except as word separators.

If the word used in the line specification for "arg n" occurs more than

once as the first word on a directive line, the message "ARGn kx" will be

printed; "k" is the number of times the word occurs. (This is not considered

an error.)

The following errors are possible on editing commands:

1. Bad format. (VITAL type "NO".)

This error occurs when the argument is formatted improperly;
e.g. multiple line specification for an INS, no 'V" argument
for a MOVE, illegal argument separator, etc. This error
also occurs when a word is chopped into two words because
of a non-alphanumeric character contained in the word.

2. Bad argument. (VITAL types "ARG n NG").

This error occurs when a word is not found at the beginning
of some line in the directive; when the ktn occurrence of a
word is specified and there are fewer than k occurrences;
when a "± n" specification specifies a line not in the directive.

3. Bad line block. (VITAL types "ARG - NG").

This error occurs when an "arg 1 -* arg 2" argument is specified
if "arg 2" specifies a line above that specified by "arg 1".

39

4. Bad MOVE destination. (VITAL types "ARG " NG").

This error occurs when the line specified after the 'V"
is within the line block which is being moved.

Thus it is impossible to clobber a directive by faulty line block specifications

The INS and REP commands expect text to follow. All lines typed

after an INS or REP command are processed as text until the text is terminated

by another meta command (a line beginning with red Vr" is typed), or by

the YES or NO function keys . If the text is terminated by a red "*w" line

or by the YES key, VITAL will accept the text and complete the INS or REP

command. If the text is terminated by the NO key, VITAL will ask "REJ?"

and await a response. If the response is the YES key, VITAL will reject

the text that has been typed and cancel the INS or REP command. If the

response is the NO key, VITAL will accept the text and complete the INS

or REP command.

If the READIN key is struck while text is being accepted, VITAL will

read paper tape and accept text from the tape. In this case, the INS or REP

command is terminated by a meta command line from the tape or by the end

of the tape.

If an INS or REP command is given from paper tape, the text is

obviously taken from the tape also. In this case the command is terminated

by the next meta command line or by the end of the tape.

If a function key other than YES, NO, or READIN is seen while text

is being typed, VITAL will type "IL CHAR" and ignore the illegal function

key.

If a chopping error is detected in a line of text, VITAL will type

"CHOPPER" followed by the text on the line separated into words by

vertical bars. The line is accepted; if it is incorrectly chopped, it may be

replaced or edited later.

40

COMMANDS

INS

The INS command accepts only a single line specification. The

text typed after the command will be inserted before the line specified.

(Text is terminated as described above.)

The command INS# is used to insert text into a fresh direction.

REP

The REP command accepts a single line or line block specification.

The text typed after the command replaces the line or line block specified.

(Text is terminated as described above.)

DEL

The DEL command accepts a single line or line block specification.

The line or line block specified is deleted from the directive. No text is

accepted after DEL.

MOVE

The MOVE command accepts a single line or line block specification

followed by "V" and a single line specification. The first line or line block

is moved to just before the line specified after the 'V". No text is accepted

after MOVE.

EDIT

The EDIT command accepts a single line or line block specification.

If the line block is longer than 30o lines, the EDIT command will be rejected;
o

VITAL types "NO". The line or line block specified is displayed on the user's

scope with a marker box on the first character; "EDIT" is typed, and VITAL

waits for the user to edit the displayed text. (Do not type anything before

the "EDIT" message is typed, even though the text may be displayed before

41

the message appears). Editing is done as follows:

Moving the Marker

YES

NO

BEGIN

READIN

LINE FEED UP

LINE FEED DOWN

Deleting Text

DELETE

WORD-EXAM

STOP

Move marker one position to right.

Move marker one position to left.

Move marker one word to right. A "word" is an
alphanumeric.

Move marker one word to left. Character string.

Move marker to beginning of line, or if at beginning
of line, to beginning of previous line.

Move marker to beginning of next line.

Deletes character in marker.

Delete character in marker and rest of word (alpha-
numeric character string).

Delete rest of line, excluding carriage return.

Other characters typed are inserted into the text to the left of the

character in the marker; the marker remains on the original character.

Editing is terminated by striking the RED key. VITAL types "ACC?"

and waits for a response. If the YES key is struck, VITAL types "OK" and

replaces the original line or line block with the text appearing on the scope.

If the NO key is struck, VITAL types ' REJ? " and waits for another response.

If the YES key is struck this time, VITAL will cancel the original EDIT command

and type OK. If the NO key is struck again, VITAL will type "EDIT" again

and return to editing mode.

Do not use the HELP button to reject the text.

OTHER DIRECTIVE COMMANDS

The FRESH, REC, WRITE, and READ meta commands are legal whenever

VITAL's attention is directed to some element (productions, semantics, or a

program) of some language.

42

FRESH

The FRESH command initializes the current language element. All

existing binary files for that element are undefined, and the directive is

made fresh.

REC

The REC command performs the following actions: the text in the

current directive is saved in character form, the directive is made fresh,

and the saved text is inserted into the directive. Thus, the effect of REC

is to re-chop the directive text. (REC does not undefine the existing binary

files.)

There are two possible reasons for using the REC command.

1. If the chopping rules for a language are changed
(e.g. a terminator is changed to a non-terminator,
an ignored terminator is changed to a visible terminator),
any existing program directives should be REC'd in order
to re-chop them with the new chopping rules. Similarly,
if it becomes necessary for the system designers to change
the chopping rules for the production language or the
semantics language, all productions and semantics
directives must be REC'd.

2. The editing meta commands currently make no attempt to
re-use the space vacated by a deleted line block; thus as
a directive is edited, it grows in size. The REC command
shrinks the directive back to minimal size.

WRITE FF

The WRITE command accepts as its argument a legal APEX name FF;

the name must begin with an alphabetic character and contain only alpha-

numeric characters. WRITE creates an APEX file named FF and stores the

text of the current directive into this file. The name FF may now be given

as the argument to a READ command.

FF becomes a file with no directory origin. The characters are

stored four per word from right to left beginning at the fourth register of the

file. (See the note following the READ description.)

43

READ FF

The READ command accepts as its argument an APEX file name FF;

the name must begin with an alphabetic character and contain only alpha-

numeric characters. FF must have the format of VITAL character file (i.e.

created by WRITE). READ makes the current language element fresh (binary

files are undefined, and the directive is made fresh), and inserts the found

in FT into the fresh directive.

NOTE: The READ and WRITE commands are intended to give the user

a way of transferring directives from one APEX name to another or from one

language to another under the same name.

To transfer a directive from one language to another under the same

APEX name, simply WRITE the directive from the proper element of the first

language into the file FF, switch VITAL's attention to the same element of

the second language, and READ FF.

To transfer a directive from one APEX name to another:

1. WRITE the directive into FF.

2 . Exit VITAL via HELP or SCRATCH.

3 . To the BT:

5 WHAT FF (note length of file)

5WRM4F FF FRE 500 (or other MK4 area)

(If FT is n pages long, it is 400n registers
long and occupies 2n drum tracks.)

4. Log out (or abort) and log in under the second APEX name.

5 . To the BT:

5DFIL FRE 500 0 400n (FF)

6. Under VITAL, do a READ FF for the proper language element.

(This inconvenient procedure will become obsolete when READ and WRITE

are implemented for MK4 drum areas.)

44

3. GENERAL

INPUT TO VITAL

Function keys (READIN, BEGIN, YES, NO, WORD EXAM, LINE FEED

DOWN, and LINE FEED UP) are special keys in VITAL. They always terminate

the current line just as carriage return does. This fact is insignificant if

the function key is typed alone on a line; but if characters are typed before

the function key is struck, VITAL will act as if a carriage return was struck

before the function key.

A line which has been terminated with carriage return or a function

key cannot be recalled. The DELETE key deletes the preceding character

on the current line; if DELETE is struck n times in succession, the last n

characters on the line are deleted. ("Characters" means single LW codes,

not compound characters.) The STOP key (not the NO key) deletes the

current line.

No distinction is made between red and black characters (except for

red W).

The READIN key signals VITAL to read paper tape. The text on a

paper tape is processed somewhat differently from keyboard text; the differences

are explained below. Also, function keys on a paper tape are ignored. The

entire tape is read in before any characters are processed; if the abort button

is pushed while the tape is being read in, VITAL will type 'ABORTED' and

return to keyboard input mode without processing the tape.

METACOMMANDS IN GENERAL

When first entered (from the BT), VITAL types W and awaits a

meta command. If the command is one which is not followed by lines of

text (unlike INS, REP), VITAL will process the command (possible soliciting

a response from the user) and eventually type ,"^r> again. If the command

45

is one which expects text, VITAL must be told when to return to command

mode; this is done by striking the YES key or the NO key (to accept or

reject the text typed, or by following the last line of text with a line beginning

with two red hands. In the former cases, VITAL will type '**•' and await another

meta command; in the latter case, the line beginning with the red hands will

be processed as the next meta command. The intention of this method of

processing is to allow VITAL to maintain closer control over the user's

actions; observations on the relative (aesthetic or practical) merits of the M5

and VITAL meta command philosophy are solicited.

RULES FOR META COMMANDS

A meta command will be rejected if the underlined portion of the

command word (see meta command list) is not typed completely, or if

the first four letters of the command word are typed incorrectly. (E.g. LI ,

LIS, LIST, LISTZZ will all be accepted as LIST; but L, LIZ will be rejected.)

Meta commands may be separated from arguments by any number of

spaces and/or tabs; arguments which are single upper case characters do

not require a separator. (E.g. BIN*, INS#.) (See the description of the

editing commands for possible exceptions.)

Meta command lines are always checked for format. The last

significant word on a line must be followed by carriage return or a function

key (possibly with intervening spaces and/or tabs). That is, commands for

which an argument is meaningless may not have one; and commands which

require a single argument may have only one.

Whenever VITAL rejects a meta command line typed on the keyboard,

a message to that effect will be given, and '**•' will be typed. All typing

done before the '<**•' is typed will be ignored. If there is doubt as to whether

the last character typed was ignored, the STOP key guarantees that it will be.

Whenever an error is detected in a meta command line from paper tape,

the line in error will be typed out before the error message. The incorrect

46

line will be ignored, W will be typed, and input will be temporarily

switched to keyboard mode. The user may then type as many lines as he

wishes; when he wishes to resume processing the tape (at the line following

the line in error), he strikes the READ IN key again. (The tape will not be

read again; no 'PETR FREE, PUSH GO' message will appear.)

All meta commands on paper tape must be preceded by two red hands.

If VITAL expects a meta command (as it does when READIN was struck when

VITAL expected a meta command, or when VITAL finishes processing a command

not followed by text) and does not see red hands on the next line of the tape,

it will type a message to that effect and treat the situation as it does other

errors.

If a meta command from paper tape requires a response from the

user, it is to be typed on the keyboard. VITAL will switch input mode to

keyboard when necessary.

If a meta command is rejected by VITAL, nothing is changed by the

rejected command.

METACOMMANDS DESCRIPTION

HELP

SCRATCH

O.UIT

LANG name

PROD

SEM

PROG name orCOMP name

DROP

INS arg

DEL arg

REP arg

* 1000 = no semantics
100 = scan listing

10 = type errors
1 = stack state (if errors)

Note: To obtain a combination of the above modes, simply unit the corresponding
binary numbers.

47

MOVE arg

EDIT arg

LIST (arg)

TYPE (arg)

FRESH

REC

BIN (mode number)

PICT

READ name

WRITE name

KEEP name

STANDARD CHOP TABLE

The following table lists the Lincoln Writer codes and their

corresponding chopper classification (see Chapter 2, 2.1).

0 0] i* 40 0 n 100 i»- t 140 a
I 1 41 R 101 z 141 A
2 2 42 S 102 1 142 P
3 3 43 T 103 143 e

•1 4 44 U 104 / 144 h
5 5 45 V 105 X 145 - !
6 6 46 w 106 # 146 ß
7 7 47 X 107 -. 147 A
1 0 8 V 50 Y 110 < N, 150 X
1 1 9 i i 51 Z r 111 > t 151 rv-

12 5 2 (t* 112 — 152 {
J] Ö 53) t 113 D 153 }
14 RI 54 4 t 114 RI 154 -

JS BN 55 - t 115 BN 155 S

lb NO 56 / t 116 NO 156 4-
17 YES 57 . t 117 YES 157 * t
2 0 A r i 60 CR ic* 120 n 1 :
2 1 B 61 TAB ic 121 c
22 C 62 BSP 122 V
23 D 63 BLK 123 q
2 4 E 64 SUP t 124 Y
25 F 65 NOR t 125 t
26 G 66 SUB t 126 w
27 H 67 RED 127 X
30 I 70 SP it** 130 i
31 J 71 wx 131 y
32 K 72 LFD 132 z
33 L 73 LFU 133 ?
34 M 74 134 U
35 N 75 135 n
36 O 76 STP 136 J t

37 P I 77 DEL 137 k t

* n = normal; t = terminate (visible); it = ignored terminator; ic = ignored
control character.

** SPACE may only be declared VTERM or ITERM (see Chapter 2, 2.1).

48

APPENDIX B

PRODUCTION LANGUAGE GUIDE

This appendix is intended to help the reader familiarize himself

with the use of Production Language. Productions are developed for the

compilation of any expression satisfying the following Backus Normal Form

specification:

< expression > :: = < term > | - < term > | < expression >- < term >

< term > :: = < primary > | < term > * < primary >

< primary > :: = < identifier > | (< expression >)

Identifiers are the basic symbolic units (see Chapter 2, 2.1).

For example, (-A *B - C) is such an expression.

The writing of productions need not be based on a BNF-specified

syntax. With a little experience, it is quite natural to think directly in

terms of Production Language. BNF is used here only as a convenience in

introducing PL.

1. Writing the above BNF description in production-like form yields:

E1II T - E

-T - E

E -T - E

T || P - T

•p *p _, 'Y

PjH I - P

(E)- P

P, T, and E would be declared as internal symbols in the final PL program;

see Chapter 2, 2.2. The symbols *, -,), and (would be declared as

reserved words; see Chapter 2, 2.1.

49

2 . Since simpler constructs must be recognized before more complex

ones, the productions must be re-ordered P, , T, , E, . Also where one

sequence of symbols resembles the end of another, the longer sequence

must be tested first if misidentification is to be avoided (consider E, above).

The result of this re-ordering is:

Pj| I - P

(E)- P

X || T *p _ T

P - T

EJ| E -T - E

-T - E

T - E

3. Flow of execution is rarely sequential; when a match is found and

the production completed, a jump must usually be made. The jump may be

unconditional, or it may depend upon the next symbol scanned. In the latter

case, productions are needed to determine proper branching.

Whenever the stack is altered or a construct is recognized, an FSL

routine must generally be executed to update the semantic column of the

stack, modify storage, or generate code.

The productions must begin in such a manner that the first symbols

scanned will be properly recognized. Also, productions should be included

for detecting syntax errors, i.e. undesired formation of the input.

The following productions are the result of the above considerations

and the heuristic guidance of the question, "What symbol can come next?"

Plll (

I - P EXEC 1

SCAN
-Pl

SCAN
'Bl

w T
1

50

TBR

EBR

(E) - P EXEC 2 -Tl

SG ERROR 1

T * p _ T EXEC 3 SCAN "r TBR

P - T SCAN " TBR

'Y * SCAN 'Pl

E-T SG - E SG EXEC 4 " EBR

- T SG - E SG EXEC 5 "" EBR

TSG- E SG w EBR

E) w P2

E • SCAN -pl

SG ERROR 2

The numbering of the EXECs and ERRORs is arbitrary.

Below is a trace of the productions executed when the formula

(-A *B -C)

is processed.

Each part of an executed production is written on a separate line;

if the stack has been modified, the new version appears on the right.

Label Production Stack

([initial state]

SCAN (-

51

(cont)

Label Production Stack

BJ

-Bl

SCAN (- I

" P,]

P1 + 1 I

P (- P

EXEC 1

" Tl

Tx + 1 P

T (- T

SCAN (- T *

"- TBR

TBR T *

SCAN (- T * I

" P. 1

?1 + 1 I

P (- T * P

EXEC 1

- Tl

T T * P

T (- T

EXEC 3

5 2

Label Production Stack

SCAN (- T -

-TBR

El + 1 - T SG

E SG (E -

EXEC 5

^EBR

EBR+ 1 E -

SCAN (E - I

--P. 1

P + 1 I

P (E - P

EXEC 1

-Tl

T, + 1 P

T (E - T

SCAN (E - T)

-TBR

Ej E - T SG

E SG (E)

EXEC 4

-EBR

EBR E)

*-P„

53

Label Production Stack

P2 (E)

P

EXEC 2

1

T1 + 1 P

T T

SCAN end of example,

The successive states of the stack consitute a parse of the

expression. This succession of states can be readily represented by the

following tree-like structure. The first character scanned is the lowest

in the tree. Successive horizontal levels correspond to successive stack

states. (See Figure 2, next page.)

54

"l3-23-7280|

FIGURE 2

55

Figure 2 may be drawn in more conventional form to clearly exhibit

the parsed structure of the example:

FIGURE 3

56

APPENDIX C

ALGOL

Included for reference are the productions and semantics of

ALGOL as implemented in VITAL. Readers of this section may find

Appendix D of assistance.

57

CO
OOOcA O O Q O •— »— «-• co to o co o ? ?

«I 4 4 4 4 4 4
CJ WOO Ul U> u
CO co en co co en CO

4 4

CJ Ul «• t

CO CO

z z z Z z z
4 4 4 4 4 4

U> u ul Ul CJ Ul
CO CO o •o ^ CO CO CO CO

c*

1

a a

at
«_» o
ul a:
Qfi

O. Q_ CL. O-
o I— •— »— •—
— co CO CO CO CO 4» «4>

~» w M w w »* «*
oc
O O i_l O O ul o ul
XUJUJU1UJULIUJ

~ ^ f\i

ct
o
ct

Q Q

4 a.
ui o

en »—»
4 a.

<J u>
UJ UJ
a a
a. a.

O _l 4 <M

S •o m
r^

X 2
•"* ~" *

C*
k- or: _l _i —• —* >- >-

oc z Q£ £ a & •o ft» s s
4 ct 4 O ce Or: • M z ct: ct t
co o _l U- •_> •—i 4 4

O 1— QC •M cs* K o o •—i

«. UJ _J •=> o -^ -* >n 3 »-. co Ul _l -1

« £ 3 £ u.
o o

o
i ce *

•*• [J ~* CO 3 3 t UJ
DC t

Ct UJ
a 1— k— UJ

x
U)
X «» S f^ 9c "4

X
"4%J ct ct - B

4 at o * o UJ 4 •—. «n %*> CD X o >- UJ
4k. O UJ 1— O- u. [Z » o o o 4 O t Ul

o X ••* Ul -•> V •u. •=> o ot o ct t
os Lei »•4 o CO •o — -^ « o

X 5 8f
_*

•=>

o ui u. « o 4 — -* «A <-D .*.
X

*v» o r_

u. z o CO _1 •n /4 to 1— fsi >- Ul

3 » £ ffi r\ o
i—

Ul o. a» ffi £5 ac M A

f*. / 1—
•/I

"• UJ
Or

Ul
Ct

o o_ a.
3) k- k- s 8 Ul

a:
CD o > o 5 ui o o 4 •ft *~ —• _l t O 1 •=> cO co Or: 81 r>
3 I— UJ UJ o o CL. Ul UJ CD A *n J —• •4 •—• t o CO 4 o

"> CO Z k— or < or —• •— 1— O %t< / Ul o — »— z >- UJ Ik- Ul Ul

e a. Ui z o
H S

UJ Cu CO z z •c V u> ot z> z •—1

a: —1 t— u. ~— •-^ M 1 s 4 => ce => o •— ct o k- or o k- Ul UJ k- k- o
«> a. z. CO X Ul z _l » »t Ul 4k ct X UJ o CO Or

a. co
CO or oc o CO o o CO co

CU CO
»ft CO ui

z
a

UJ
or

•»». »- Ct => Ul o o
UJ 3 ffi 5

X »— I—
r\<

CD CO " 4 » 4 a. co « o. a. »
•4 4k A U- U- <=> «t -- •o Ul S u. tfl -^

o _J UJ UJ —• u> z z O « •ft -M Ijj X •ft r^

•ft <3 Z o :> V ct or: X 4 4 •n UJ o u. K 1— -- •4 UJ

a U UJ o 4 Ul 4 UJ Ul Ul •n *. ^ 1 <t 5 -^ _l

«h. * CD CO M CO pH o Ul _1 _l SO u. u. » o •—•
u* _l a Ul o o 4k o «^ » PH Ul o k- X

UJ o z
o z — 4

-4k +k Ul
Ct- 35 CD S 2 III 4>

•o •ft to •* II
at < k-

III
2

4 O ct -• 1 •- ^-^ Ul O- H ••• 4k it II III III

•ft X UJ Q: k~ o. III III UJ II II 1— •^
o «. m 4 4k • k4* CO -f* CO

O- _l

Q-

O »-
III III III

o 4

or.
u

_J
o

X

k-

X

1-
z ^

UJ CO CO CO CO CO CO CO CO *— k— *— o z x O 3 _l z V- ul o o o X rÄ m- ~« •n

3 UJ U UJ u- UJ Ul Ul UJ z z CO •—• =3 z 1— a. ct UJ CO O- CO k- k- 3 o co CO —"
t- Ot (K OS Or ct ac. ct ct *m

»•" CO o o O

t I I o

4 4«
O o

58

(f) IT) (O o
<3 CD O O CO
6 k - - k ? *

O CO CO Ui •»
o oc in * fc fc

o

in In Q
•>«/> — — a >• •> X •-

<3 et Ct CO reCDpcOcOLUcOOOO LU to CO w ce Oiftö-C5Ü_D

«M LJ U «* *•
z z z z z z z z z z z z z z z z z z
<x <t •a «t «I «i «I «I •« -a «t •« «I «I •« «X <x «X
L_> o LJ <_» o L-> <_> LJ o u o <_> o 1_> l_> LJ l_> LJ
CO CO CO

O LJ
UJ LU

BB

CO CO CO CO CO CO

UJ

CO CO CO CO CO CO CO CO CO

't ri d ri d UJ - »^
-, •« V rv« w w W w m «X <M fx <M — •o

ce ce ce ce
o l_l O LJ CJ o CJ u o o <_> o u <_> LJ O o LJ LJ
Ce UJ LU LU UJ Ce LU LU LU LU UJ ce LU UJ LU ce LU LU LU

a B B B X
UJ a UJ B B B B Ej UJ UJ UJ £] Q B B

LJ l_> <~> LJ
CO CO CO CO

<-> LJ
CO CO

ce
o <_>
ce LU

ffi B B S

LU LU O LU UJ
O C3 —CD Q 2
o_ a. w a. a. r>

o z
O 3

* t

<a o

5 <"

ce 1 »
CJ L_> _J LJ _1 LJ UJ U-

t LU UJ o u o U > 111 (• m
O O O O .— CD — O < O K O OO

.-COCL.0-COwO-wCl.COcO« ^ CO — — CO CO

t

I- z
Z ce

1

o 1

o
I O — O
»- Ä ° I-
CO LU LU O O

— - -moo

t
o

•- CO ui »- a: »- »- xoo
3- CO i UJ UJ «. co z •>•
< LJ o oc o Q: o uJoooo«ioo
toceo»co»'co>-.»-wcooooiococo

« a.
UJ

59

B
o o «» a: o Q;

c9a.UQLuQ.LD0. I— 0- to »— 1— Ö a (L CD CD LJ Q

r* «N, «N. «S.

o Q- Q_ t— •-
CO CD CD CD CD a LU O »<. O O-

(D u U M m

o

Q

to 10

z z
4 4
LJ t_>
10 to

LJ
to

tj LJ
to to

u 0
LU LlJ

B a
*» ^ n

UJ
a.

LJ O <_> LJ O t_l LJ «_• «_> <_l LJ u
Q, UJ UJ UJ Ui LU LlJ LU LU LU UJ

£5 B B B B B B B B ö UJ

IV » K m iv t— CM •*>
*3 w *- t-~ r» w w »^ r^.

00 o u o o o o *->
Ul UJ Ul UI U Ul Ul UJUi

Ul UJ

B B

«J «J U O LJ LJ LJ LJ
LU LU LU LU LU LU LU Ul

B B BBBBBB

O w
4 a

O

to
>- CD

<1 1Ü
u

4 4 <J to ~* 4 -<I O to UJ
*-•-' 0- Q- 3L O _l I O 0 O O Q. O-

0 UJ 4 4 O Q- <J> ts 0 O O to O Ci I— w to to to CO O O LU l_> <I 4 LJ
0 t— to 0 CD O- a- Ul w to to m m to O •—1 O g, tO CO B _l O C3 CL. Q_

Ul . - a •a ^— >—• Q- CD 0: •- Q. Q- t— 1— O n_ LJ
0. •a CD a. Q- 0 0 Q_ LU Q_ »- t— Ul Ul O- CD " 4 cv 0-

1
—*

U- <X< CD CD CD LU LU O LJ CD Cl~ Q- O •O L-'

t
t

t t *
O

t t 1 1—
X g g

x;
t-

t t
1 »

u O to O 0 0 O Z t 0 0 O t

n ? » 1 1

1 1

to

Q.
O.

to to 00

t

to

LU LU
• f ? k—

LU

1 to

0- 1
« »

'-*• t
s
I

1 1
1 t

LU tx> CD ? UJ 1 » 1— LU Ul LU LU t to CD *— » O O 1— Ul *» o_ 1 => => *— —1 - r*~ i Q- 31 O O a. X — _l -I X I t3 CD O » Oi M LU Ul . ^-»
e» O to to O O- O O t— O t— Q_ O Ci- at. O z O O LU Q. t— O O- < to <. to Ul 4 LU LJ . z —* A * 0 O •-• — to w Z or: w to w «1 to te LU O w — — to Ul O tn CD > O Ä LU O O Ul Ul ><, *> => 0 >—• ~* •=> 4 CD tt OC 4 »- •- \~ Q- t- »— O U _ _ Lu
a •* to •— '— o_ O- O. O <3 — UJ ~ ^ »— O- •— Ul *— Ul

1
LU - LU -I 4 CD to w Ul / CD CD CD LU CD O LU LU — — ex Q_ •O •0 LJ

« o.

»M M «s« "•
Q- 1— t- LU
OD CO CD CD

60

Ö5Q

o o
a ec

O Q_ 0_ ÖQÖ5 o-tototocoototototo O i/>

to to to

LLJ

a
O »O —, «\» ~,

o
UJ

Ö

v-» o o o w o

a a
UJ ct

UJ uJ

uUKUiuykiyyiLiuuiiJ

aasaaaaaaaaaa

•o »n «\»
— «Si —.

kO M> u> —• —« •••.
at

i_> o o o o o o
UJ u u u ui Q: UJ

UJ u UJ UJ UJ ul UJ

•=> z
a. x UJ
UJ 7 CD w

65 - 5 to
CD w C2
z o o z

o z _i UJ _1 to » z z z UJ
o to => <_> _i w O _1 t o o> UJ o _l 1 w
to x CC <t to <I CD z tn w to <-D

z 3t O z <_> z l_> —• a. o UJ Z z CD z
UJ

t

u. =) Q_ r> n_ Cw Q_

to -
1

CD

Q- to to CD

»
o s =3

t
o z 1 1 t

a. a. z
UJ O

t
o »

to t

o to => DX 3 w to UJ CD » 5 UJ CD
u- to X o •—• CD 1 t o o to z t CD to 5 ^ UJ

UJ ^ o . 1 3 o
t O St s Cc a- d UJ •" ^ 5 d

z UJ w to j-^^ to «h. o. I* 3 1 to to ^
UJ ce UJ UM 1 •a O o z z to z to «> => z a. _) —1 *v* w-* UJ UJ OT CC =5 rD tD z z z o

O t_> •— Cu r> UJ 1 «t _i _1 •*! «I to •—• l_> .—• •—• KJ , a > UJ UJ X a. <=> <i <t £=1 o g £ Ä «i _l _i o UJ o o -J tt *& o= *— :* o o o o •—i O >-> v_> _1 w t_> z UJ CD UJ UJ u CD
1 u UJ S to w to o «/) C/J o Q_ to O- O- O- a. u. u. Ul UJ — I-* => CO Q- CD CD — U-

o o o
t/> -y« to to

g
•i o o>
t- or: o:

t_i a. a.
tj
Q- o-

o
= z
O l*J

61

. »» 8 ^ **^
l~> _i _1 » 3B a_ <N* o m o

101 cO X •- —1 OC CD »— >- UJ oc - •- CO UJ X - oc *— - *r *** a o_ >- ro *» -x —1 r>i •- »o o CO r~^ »— O- U-
oc £ * •* o -* Q_ >-

_1
-< ^ •*> a» >- - CO Q_ •>X •» • >- _l o »c O- »— in OC —• X • oc d s —I «I o <_> •- «1 » •>• <x »— «I •-» ¥— • » _l H- -I o OC

CM o >• oc X **>
UJ

»• d 3 <t CD _J «X t—
V— a. o - • S UJ CO V— •- 51 CO g » » X •- u- -1 o >- >- >- fc^-' IMC

t— 5 cj s UJ a. 5 UJ
o ^ •* 9f öc s " s S to

» UJ o CO t— *M •a o •* ^^ Cfc «N X =- - => CO _l
o >~ _i - o •O 3: —1 u- t— *— •• t C3 o o o. Q. _l *- QC OQ a: (D a UJ «X UJ 1» >- a. a: a. z a: o 4

•a «X x • -jx CO •>• OC M _1 >- t a: LK t t _l •- Q- »w^ » • _1 o >_> n_ •< _1 cc — i— CO CJ u OC «-- O
K UJ - z o - •- o o t=> i— <l •a o CD >- o o O CJ o_ ITS
t 8= 5 OC d ^1

1
•"* "~ •"• &- t£ t- » ~ s • •

CJ »* ^ d d te 3 M
h >-

oc
t—
Q- CO o

•3L >- * S „ r*

M <_> 5 •» t o _) o OC

o.
fij UJ . g 5 ^r

4C • - a. tO Q- CL. _i •- •« o •— z •- Q; o= CO • • _1 1— Ill Q- Q- z »- • - a » Q_ JK • • - - .- «i w Z »- _) z O) »— «- — o a U- CD ^n 31 — CO X 3K «i
UJ _l to at oc •*> **> _i 3: Ü <-J CO CD •—• t—. —l —• r' I— UJ 31 X r- CO p« .. w o k~ CO _i

u. _l • >- «"* *» o CD 1 «X X X -I < CO o 1— ¥—. z cc a: >- "I \— ^> O <_l UJ 14 _» >- U-
<1 —> to? Lö a: * * *» o

o 3 Lö . o" V o t 21
«I V "3 J fe V f 5 £ o

_J
O
-J fe CD y « 3t

CO 9t
H _J • UJ t— a. a_ *x o O a o o o o ••- 1 —1 T —- -*- CD _1 l_> CO CO CO UJ w. _1 >- Q_ 2:
CO • O- a: - • - _J rvi • • » rsi rst o _) OC —' • —• Q- t O o 1 III CD U CD CL Or 1 rt:

o - >— 2- - UJ «N« <N« o _1 >- M _1 CO 1— + »— -• + i- OC CO _1 > UJ UJ UJ o — 1 UJ 13
*o o _1 *— o O- «N. n en UJ EC <_> «x o •- UJ ^ - UJ

UJ
Q_ Z -1 • rM »— u. 2- OC UJ CO Q- o_ O- _l X Ml Q. CO

g o => co u- >- % s 2. CD U- o or o Z > • -• o >- o o —« »— CD UJ >- o _l _1 •<k A 3L jo s V _J UJ
W> CD 3E o UJ >~ >- «I UJ OC OC -I CJ < • • o CL. tt ~- a. i— OC •=> a CO 1— III •« t 1 O U- «X ct

2, -n •« CO ac o O- D. CO _l oc a. <x CD 0- CO «. - <_l •a CO <t OC CO -« " CO c» U- O o —> * o. «i * — =^ u- a

UJ
U-

CJ

UJ O _l
= UJ UJ
»- CO u

WC W W. X

o

_j CO CO CD
«I •— o co •- »- CO z

CO CO OC —•

5

62

g 5
4
t

to
a.

-a _l

• a.

E

£
o

s
UJ z

at
3 »o
UJ >-
<_» a
o «I

a.

< »- *•* »-
CK t O-

E

rt

Ö

3>5
en o

CD
o
5 1
* 4

Be
i— •1
</}
X z
4 ce • -

z * £ £
UJ t_> UJ Q-
I o ce >-
1— _1 cc

a P* •a
cc o „*-, A

t— V— o 1
to to X

o
_J £

«I
a. g to

X >— -X z
A to X UJ

<_> •u. »—• »- •—
O
„1 « z s 3
or _1 u_ o ,- to
o CD to g >-
t— SH o a
to

O- 3 _1 o
1-

4

U- o * •a 12 u_
— =* O- * tj »

r CD
K- 3
1 V •- •• >- S
g Ct ,. HS t •x.

1—
l— o H* c\« 3-

z t- t/i 1— 4 1- o —• z t~ CC t •— *-
o •—• - - o CD a. A

o
«3

4 ,. a V
o Q. I— ^- — t t_>
_I 21 1* to lO 1 —* o »—
m »— ce X X •—• i _i O

S3 CD X w- '-r* <-* _ Ul z
ra O n_ Q- t— o* Cl u.

Q_ to Z o O Qc 1— o _
•• ~~ £E a_ a_ ** Ct «_> M

CD

O. _l

i i—
vt (/)
4 X
t—
to Q-
X o
— Q-

?f i'^

.- Q. CD
— >- =>
~ CK </>
•— 4 A

?- .-
— — 0-
a H I
o - I—
h- ^ CD
z 4 r? ~ ^ CO

— X —

_l o-
in;

-» >-
«» 4

o
_l CD

x to

Q- 4 — Q-

ce Q. t— Q£
Of 4

O- _ t-

v ac - >-> »—
O CD A
-I O
UJ (A s
<=> a
o ~ u_

to

«

Ik

«o CD

63

to
d
re
5

— Q-

BE
o •* —

=, o

t

ct rs:

& i £
<_> Q- « >-

- ac
ce -a
o A

«M _l

H

-»e w; £ 8 t— o •o o

^ X X ce 5 ce o z <» » o

3: o >_> UJ t- z «X •<x _1 o -I Qi o

w tO to «n ce a. a. •- ce o — r— o

tT)
a_ O- _) _> o

td o a-.

u_
CD o

i5i s ~ UJ
Ce x 5 c V o »— Ö tn •"• C4.

= —» —t _i ce s M 1 •- ••- —1 z - .- o •• >_> o «1 »- •- ^ •JK =3
—1 »» *• UJ _l o u. o U- o mi O 4L — _j — I

tj .. UJ UJ .- X o O •— £ CO «. UJ t— t t Ml — -a
UJ UJ Qu O. UJ »- CD _) _) 1 _> <x UJ —1 t O —• •1 .' V* *" 5 al o a. >~ >• O- x ce o — o X _l _1 Q. — t— ce <: zx Ct >

UJ _J fe & _l to
o a •a D g _j c? X

X >- ^- ffi rs -a V1 ^ o 1

»— CD C-T 1 t c:> O- —- to ce <l CD o >— to en 5 »— k— 0_ o Ckl CL
UJ _-. 1 Ct »— * a. o ce o O- <I U- to 1 XX. .- Q- _i CD II <1 CD f —•
_l UJ _1 O tj _J — ce y~ •—• «I •— —1 1 UJ <t rs« >- => A. 1 — A

O- o »— «X a to UJ -1 ce — £ _1 O _1 UJ lO — _1 _i ce X —1 — UJ -I o *.
X • o z E •— —1 «x o •a — -I = _J o * _i •« •« _1 o -J 1
O a. CD oc it 5 «I * * X o «X a <t -* •« 1 •«X U- tt: -«* —* U.

•_> t—
IS)

o «3 o o t— -i * ~ * e " <_> v- U- >~ _J o W. ~* •_! ce ~ »— ^ a •^
UJ u_ <t •a
to C£ O-
UJ <o to QC
a- «X UJ -« ce o >- _1 •—• z >- • 0- 2 •« =>
>»» X tu a. 8
—•

h
<->
o

to
o

_1
o
z »—

to
o w |k ce z UJ o « h
p a m *i n x •- UJ * • * * SP N «" m

* -. —• -* — to UJ — « — -^ * -^ * »Nl » *M * *V -1

»— «X

=> a
•a

5 5

* d

4ödJ

I»«
ce

6 4

•» B5
v-J w: —»
O i_> >— ,- _1 •« <

_i CD i-
CD X to —

w 3 >-
to X 5 *

I— a. t o •-

5 _i ce X to
_J o U- — t- Q- J~

Ce _i CD a. M o

-a .- X --• <i t _J — t—
a. <_• as >— 2 r** 5. •^ CO ft t

?s .. Ik
to s o g «

_J 3 ^
UJ —> »V. —• <I * <I O »• o c»

a: t- I— • • CL *•* Q_ CD -* * 3 <x. • - >- » <_> _J i *~ tO U-

z o Ct — • - U_ £ > ol UJ >- t —. IJJ X fr- *— _J "O Ui W £ 1^1 to n C* »—
U- z 1 z: r- o Cr U_ <_> .—• -« Ct —.
«1 o o UJ O i2 3 A 5 UJ

Ce
UJ
cr to ,» O *— 4

t_ a. •wl 1 a. u. UJ a •—' TE sr m w z
o >- <-» — >- .* CD w t— **. Ct o

o Z H- o o »— o_ —• ce or >• .—• — •o *N* u_ —•

•o r> o _J O- X ce O- «t UJ _i Z — — UJ to
. u. — CD — * 3 1 X ?" i— _i —• 1 * ct

u> * o o o —» o => z •< + o u. U-

5
£

— Ce
i~> a:
u- <I
^ . Ql tO
1 —

rc
z
o

f
ce
t—
cu
>-
ce

5 a
3= »- >-
t—

3 :w- >- O-
to

1— «x * >-
£ ÖS«
0. "^ JE ° x © a:
t~ to III
o => _l UJ

UJ u.
a- _i o
 < K

5 - =* SZ vj »-
.- rä
A. —• >-

— »— -i
• t ce

to
9 Cv

UJ u-
ce —• - 5Z —

to

ÜJ

rs
•a

if =* o rc •- ^-, t- tn
»- •^ •—• - ce
t i z W >— — - »— •a a. ^
w" * D_ SB =^ x cc
•a CL D- 1— to 1
•- >- 2. *-^-' _l o ^^
to -j 3 X 3 a. o
a _i —1 •- to «I — •a <tt r> U- • »
A i— Z 1^ Q. >- t- a - X S

t- to
M 5

X
-i S 5

ce x n a. z »— ce «I UJ
KJ " UJ u. to

r*~ O X o UJ V) ~- -J t f— II ce — *-• •
i CD KJ -< •Ni

_* £ 7 to 1 £, £^ ^-' to >i »- a UJ «* >- •a. Ct U CO a: _i
.J H *- •a •— UJ _ o
i A. tO D. o Ct o S. £ <x a. z »— I *— u. « U. U- o r> * >-

=< M _ M — =* — CD * to

ce

65

s
m

o
U. CD

5 -

* rt

to
r>
EL

2
•a
O-

— «n

UJ
CL. O
lO —

UJ UJ
CD CD
«I <t

* *

- ot
— o

> o

« s!
_1 o
CO t-

o

g
1-
m

u o .-
ÜJ O
O _l
O CO

o
ct

«1

5

in
t
z
o

ct

o

rs

in
Q.

o.

UJ _i co KS -i
- «x u> 4

•- - _i _i o *—
co -i o
•a. UJ CO
JOS
§3 5

5

r g
u

•- o
to _1

UJ

UJ
ct M
3 uj

Ct Ct
j y UJ

_J Q. O
UJ x o
o = »
o —> -•

o z >-> >-
Ct o
=J OS

CL
UJ * u.
ct * —

_l Q-
ui m

o >•
4 4-1
° 9 2

~ =» M «I

«Ct •- <t - C» i— in

S t— _i •—«
t =J X

i— r~^ •>* m «1
z »- <=> u. •=> a O- z

•a
o ^ t— s ,. s

ct t- z .- z x r*~« t— X *•
<t z w •« h- O UJ •a rc
Q- w in t— a. t— ct ct »-

m • M UJ _i <i ^% a_
UJ — UJ

Ö in <J - •- o_ — _i > •- > - z UJ t— •
a s ^ .. —1

o 5 UJ
n y t

CL *** •—-• in m in o *i i_>
•- in t— _l ^-r' t— in o
m X z O t— X >- in ^-^ _i
«I _j CO <wl CO o m _i UJ 0- U)

*• _i r> in 2- z o _i r o m •tt Q- t >- U- CU <i o_ o •» l_> u o in ~ M *— •* M o

•« O-
m _i

a.
O- i

£ 3

ul -*

in >-
*-' _i
o- _i
O «I
O- y-

UJ i

•-' _i o

w.

o

O- _J

t »-
o o

fS ~

2
UJ
in

o
co

Ik
co

g
1%
ct

66

CD •» ac t- »-
*t «Si ac t «M
_1 CC 1

LU «M
a
<

_1 CO _l rst
_1 ct _> »- t-

s o
t—
z

CS*

Ct
ff

o «S •* •* t—• ct: •- _» *M
OJ «Ni •a 1 CM or r- fx

•— •— — LU or o 1 ac
t t Q O 1 •— rst i

,-*-> °* t— cc rst Z CO _1 *s»

£ ffi J *— h- LU 52 -1

«X I t-
a: »-
LU OC
CO _l .—•

- •« o
«M Z «o

^ £ CO «/» —
_J
o »- *» *Si

CO o LU F- _1 LU
s
CO

g
CO

 fM

5 S -

3 £ 5 ~
CO O. _l

o •— >" t—
•n O J O
. Z « -I Z

so Lt- 4 U>

i - s •—

o •» a:
o T
CC CC LU

o t CO r— »— rs* -J »—•
z CO _l •a. X

s ~ a! u_ LU

1—

«X

z *-
1— «1

5 CO

LU «X

Lt. "-

CO

Cu

LU
=5

a.
t

=^ O- v- —

Q.

t

-J Z _J a:
CO LJ CD •-
«I a. •a 1 —i

—I _i »—
CL. 3C

CO
a ~ *

d R =l o

-I •a — UJ
l_> tß c_> z> 5 <-*^ — _J • - • - —• *• <x X

«N. rs* »— (N, m > t—
Ct t- - t— TS -
a A Z J, 8 rst *— ^
i _i CJ _) '-^ z • - a.

LU
o

CSJ U_ •- *^ -- _i •* —
CC CC o •XL c» _i i— CD CO » -J' O t— CO »— •a .—. <t
*M •a CO t => t o B _l U-
1 Li «1 o Q «I o tV. *4 ^—

o

CL.

1

o
CO

d
s

2- - 9- «
CD

67

o
et

-1

UJ -•
m i—

3 A

n- d
UJ CO ^- <t

in
d

or

tf
t
u <-> t—
O Q- O-
_l —' t
UJ I -
o in o
° P »-

a - IS

Z U £j

Q. Q. <t
O O U
a. a. K2

.- is

dd
a a.
O 3E

o
o

«. M <~>

5

in
UJ

c* ul «N»

UJ
CO

1 a. _l >- •* w-- d t— o ct
o.

5
*—
t

UJ
t—

CD

#- • •• • * r*s z _)
•o & _J a) >- O 5^ "
o •— CD -a öS 3:
_J «X «I _j t-
UJ >— _1 _l _i
o in UJ _) — «i _)
o _1 CD _i ITS >• •«
w in _1 -a <i » z

*i 5 _J o O «si o
u. •- r- 1—
u. z _i CJ w- w* in
3 u _) .«- a *— <N*

X UJ l- O- «i «N< *— i—

to *-' u »— k o X CD o
0. a. 1 o o t => f. z

UJ o * fSJ »— * -4 —> —I U-

°5 °- «i * _J w. * _J M -« —
o

^ d
t

o Jj .3 a.
o co co at

<t «t s
—I _1 _) -> W
«* «I «i
Z _! _l Z W ~
O _J _l UJ «/> «s> r>i 0£

«. P 5 Ö £ fe ¥ ±^S A
— ui is IS :• 1

z CD .- -- n *~ IS **
o: z N "< JONU^IONXJ

r> O r— r— O _J O _J CO _l •—
I- J-* * 1lJ.K«J<«=U.*
UJ * •-> «M ~ « * * *
ce * _>_iSI*52*M*K*H!

K

3 . -i
m

(.8

a-
1
at
o

a
t

a
t

.-1

a

IM US a

* s * z i
a. I a. ui a.

ES

Q.

iTS as

sir«
i. a ÜJ a.

rs:

t ^
a; t—

UJ 4 U < J 4

SZ g M 2 SE sz

Ö

or. CXL
«St *M

o£ a:

A A
«N*

~ _1
O O _l _1 «
o UJ Z3 •

¥ ' f J

^ * SE * ra

A A z
o
ZA

Q^ _i A A A A

to
3 •

_i o _i a. _i

> tf) *s* i— *"*

C* f* *M «*

A V /»I N4

* SZ * SB * SZ SZ K M SZ SZ

(M a. UJ
i x u

CM »N. UJ c> t_ o
a: a: t— •— -< •-

A A •— — »* —
t— ct •< «

j O H W HI
> 5 5S -

»— _l O Q_ 4 X "o
O z •» a; «J x — m _J
f, < j p j U n p

* * * _i 6_ u_ * sz * sz * sz * -sz —

UJ
to

DC

A "

U)
1/1

UJ (_ _|

_l =* -a. u.
UJ=, £ ~

<x t-» <x o
SZ UJ SZ

«3

to

UJ

to

UJ
to

U- t

UJ «i
<S) =« UJ

s

69

J-B src STB

* s £
Lü a. Q_ X a.

•- X
_J _J r- _l

z _1 •- —1 _l
Ui •a L_» <! _1 •«
X
t—

-I

E 2 si
Of

s •o •a

1— to €/>

z •—« •—•

o CM

_1 _1
z to
UI — u. U
X .— •—i

»- o»
-1 UJ UJ

-1 lO to

Sit _J _l
UJ Ul

ct

a-

g
£

a:
1

u u <x et — — u. T

to

d

5 £
X ° ° r= O _| o

— O —
« _1 O
_l CD t—

5

. to

ct -Cl o a: ^^ —. .. •— UJ
t — X <t — 3E Ct src Ct X

5 i— z sz cu t r*-> cd •- *-^ X
t r-

i_i Q- LiJ o v* ü»- >- —4 CM ul •*> •n ^ t-> •—• X Q- •N Ct Ct _l _l »-
to «X w ce I— 1— T— •I 1 * _1 •-
•^ III i_i »- t Z wl M •• W. «x «. ITS II — t- CD to o CO „ •— «I - HE •o <I z i *— •a Q- =3 CO => tt « I- w. or _l t— o »- _i
=* z s £ s II £ o

Ö X £ B ^
X ~ CM

r— o
o
l—

«I <u w Ct »— a: z: O ^

~^
X ^»^ •—• <i ill

u- * to <i *— z <i i—• -1 _i CD t o ~
-• CO to o o ct x UJ »- X z _l l—

UJ ct r> _i «t X _i — o «o X _l >- »— to o «M :• —
to
_l =! o J? •a ^ u

—i
•< to S_

tO _l
O «X

ct
1 X 2 * _l

to u.
LU =* * <-> * — =* <-> ~ - M a. <_» UJ M * — M —

r- _1 UJ

s it- -I
I - 3 tn < ^- ul re

to to
d

i
t-J

III

3 =* —
Ct * « =* -

u
CO

to

7 0

TB

E

•e rc
-» a

•a. _l w
o "^ X

4 5 _l UJ UJ u_ tn • - **i H-
u- in in *-^ O' CD

s f .. tri d fe 8 t E; 3 o

•-• =» •1 fit r>
ÜJ

— -* —. U. <*
i mt *^- CD O 3: —» o 1 —^ i _i

t— o «s. r*-. —I <c i— CD => 3- Q. z •—•
(- _1 —. OC >_> _l < •—• »r- O CD o <=> r> I o >-
5 o 1 o •— U- IX ZK «•* O —> .- <x <x L> => ,—. z

•a V- 3- _J o —1 • — ki o o »-> —» m =>
ul a u-

31 =! 8 E 9c _l
<1 5 •o

_l _l rn £ »» ii-
f\J >— 5 <I *i »-J o M Z> -Z z _j 1— r> •—i CD «.. o

UJ K *i Ot U- *X <~> —^ o o Q- m et in «I 5 <1 X _
et v— a: «1 lit M &E •— — UJ SZ CD X — _l 2'. •— o f>* z
o 1 m »— Q- z _ - t— t— «w »— w •- U- X PHI — rD -J UJ «1 o

ul i— UJ «I VC UJ *• •- •—• w •—• in •p X ** t— »i rs: o .- «M .- i X CD ~-
U- lO a in o i/> I 2: <I in —• «N* cn C^i s-s •n <n Q- o «• • z o »o _J n_ •o sj -je ST: •o
-d a CD fN4

•a li •a *—
au

W •>
UJ CS 3 CD CD 5 re 5 h * CD Jöä ?- ° f5 o

CL
CD

II ö CD t UJ
UJ CD

«I
UI »N. UJ —1 _i —I _J Q - « K _i C3 _J —S _l *-> w o UJ _l —> 1 V i— LO ö _J -J 1 UJ _1
oc _1 t— _) -J II «Nt •— 1—' *_> u_ UJ U- —• «N* U- «- a. i *» it 1

o o 1 lO IM X m CD CD CD CD et ^ UJ t— <N| -- >J> t— CK c^ UJ •— —.
•o 1— 1 UJ •O u o o -J «- _l _l D* 3: u_ 3: _i 3: 5 «I z •"X o I »- »— rsi ••- _l UJ •3 o o X X X z »— • X X

i 1? _1 f _1 o_ z a_ — r> o in •—1 t/> UJ m _J UJ _l U- tn t IT —i *S(in r* CD t- in u. r in U- e fsi TM. in * u_ * U- o •a «I * r> * => ••• ZD •* U- •* U- * o *>• _l u. _i rc «> —> o ^ r> pM -J » r> " W. «1 * Q- w; * Q_ M * V, * Q_

w a

71

a cd

o o »—

02

^t ,_ 0 •^ »— 0
O z «->
<t «1 •=> -
_I 1^
U. t— STC ai •a.
O- £ h

0 tn
i K- •0 UJ 0
=3 t/"> • - 0 _i ^-»^
—» ^^ -1 •—• X 0

ce 0 _i 3: tr> »— .• s 0 t— u. :* 3
•o u- - O- 0.

s u- «I £ •V ^ ö
_J 0 1— t— UJ •n
L_ r* W) o* a.

—1 C3 a ii- OL _) UJ

I ä w 3; O 1 l-
to u. Q_ => u. * V r> •—> ••> O —» * _1
D_ w. * Q_ M * M «J *

$

ä

72

APPENDIX D

SYMBOLS

The following two tables list the symbols used in Production

Language and Formal Semantic Language, as well as the sections of the

manual which explain these symbols .

TABLE 1

PRODUCTION LANGUAGE: SYMBOLS

END

NORM

VTERM

ITERM

RES

p. . .

q. . .

INT

1 *

2.1

2.1

2.1

2.2

2.2

2.2

2.3

2.5

3

1

1

EXEC

UNSTK

STK

STAK

SCAN

ERROR

HALT

NEXT

TEST

RETURN

CALL

I

SG

* Numbers refer to sections of Chapter 2

73

TABLE 2

FORMAL SEMANTIC LANGUAGE: SYMBOLS

CODELOC

STORLOC

PERSLOC

ACCUM

MARK

MAIN

SAVCELL

LL

LLi

Ri

RRi

• •• I • • • t

... { ...,

FLADi

CD
k

>

t

II
constant

(

)

t3 ... C=D

i

TRUE

FALSE

... IS .

1.1 * CONST

1.1
=

1.1 t
1.1 <

1.1 >

1.1
<

1.1 ^

1.2 OK

1.2 SIGNAL

1.2 +

1.2 -

1.5
*

1.5 /

1.6 ~

1.7 A

1.8 V

1.9 !+^

1.10 PUSH

1.11 POP

1.12 ENTER { .

1.13, 1.23 -

1.13, 1.23 TALLY

1.14 LOAD

1.15 SAVLOAD

1.16 SAVTEMP

1.17 W

1.18 w

1.18 w

1.19 RETURN

.1

1 .20

1.21

1.21

1.21

1.21

1.21

1.21

1.22

1.22

2

2

2

2

2

2

2

2

3.1

3.1

3.2

3.3

3.4

3.5

3.5

3.5

3.6, 3.7

3.8

3.8

3.9

* Numbers refer to sections of Chapter 3

74

(Cont.)

(Cont.)

EXIT 3.9

JUMP 3.11

CALL 3.12

FAULT 3.13

STOP 3.14

COMPLETE 3.15

IF.. .THEN., ••I 3.16

IF NOT...THEN... j[3.17

IF.. .THEN., > • -L.LJO.LJ • • • 1 3.18

CELL 4.1

INDEX 4.2

RINDEX 4.3

TABLE 4.4

STACK 4.5

RSTAK 4.6

DATA 4.7

BDATA 4.8

I DATA 4.8

FDATA 4.8

RDATA 4.8

BEGIN 5.1

END 5.1

* 5.1

i 5.1

1 5.1

75

REFERENCES

Feldman, J. A. , A Formal Semantics for Computer Oriented

Languages, Computation Center, Carnegie Institute of

Technology, 1964.

Feldman, J. A. , A Formal Semantics for Computer Languages

and its Application in a Compiler-Compiler. Comm. of the

ACM, Vol. 9, No. 1, January 19 66.

3. Floyd, R. W. , A Descriptive Language for Symbol Manipulation.

JACM, October 19 61.

77

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and Indexing annotation must be entered when the overall report la classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.I.T.

2a. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP
None

3. REPORT TITLE

VITAL Compiler-Compiler System Reference Manual

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

I e< hnical Note

5. AUTHORISI (Last name, first name, Initial)

Mondshein, Lee F.

6. REPORT DATE

8 February 1967
7a. TOTAL NO. OF PAGES

84
7b. NO. OF REFS

8a. CONTRACT OR GRANT NO.
AF 19 (628)-5167

b. PROJECT NO.

AR PA Order 691

9a. ORIGINATOR'S REPORT NUMBER(S)

Technical Note 1967-12

96. OTHER REPORT NO(S) (Any other numbers that may be
assigned thia report)

ESD-TR-67-S1

10. AVAIL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,
Department of Defense

13. ABSTRACT

This manual describes the general operation of the VITAL compiler-
compiler system and the details of Production Language (PL) and Formal
Semantic Language (FSL).

The appendices contain information on the system's meta-commands,
a guide to the use of PL, an example of an ALGOL compiler, and a table
of symbols used in PL and FSL.

14. KEY WORDS

VITAL
ALGOL

compiler-compiler system
computer languages

algorithmic language

78 UNCLASSIFIED

Security Classification

